University of Exeter

Periodicity

Exeter Symmetry Pages

The following tables indicate the number of symmetry operations of a given period for each point group. If two point groups possess the same elements in the following tables, then they are termed isomorphic. Sets of isomorphic groups are form an abstract group (for example, C2h, C2v and D2).

The period of a symmetry operation is defined as the number of times that operation must be performed to be equivalent to the identity.

Symmetry Operation: E Cn Sn sigma i
Period: 1 n n 2 2

  Period   Period
Point
group
1 2 3 4 5 6   Point
group
1 2 3 4 5 6
C1 1        C1h 11    
C2 11       C2h 13    
C3 1 1      C3h 114   
C4 11 2     C4h 13 4  
C5 1   4    C5h 11  8 
C6 112  2   C6h 134  4
 
  Period   Period
Point
group
1 2 3 4 5 6   Point
group
1 2 3 4 5 6
S2 11       C2v 13    
    C3v 132   
S4 11 2     C4v 15 2  
    C5v 15  2 
S6 112  2   C6v 172  2
 
  Period   Period
Point
group
1 2 3 4 5 6   Point
group
1 2 3 4 5 6
D2 13       D2h 17    
D3 123      D3h 174   
D4 15 2     D4h 111 4  
D5 15  4    D5h 111  8 
D6 172  2   D6h 1154  4

  Period   Period
Point
group
1 2 3 4 5 6   Point
group
1 2 3 4 5 6 8 10 12
T 138      D2d 15 2     
Th 174  4   D3d 172  2   
O 1986     D4d 19 2  4  
Td 1986     D5d 111  4  4 
Oh 119812 8   D6d 11122 2  4