Cubic: Oh (m3m) - Products |
A1g | A2g | Eg | T1g | T2g | A1u | A2u | Eu | T1u | T2u | |
A1g | A1g | A2g | Eg | T1g | T2g | A1u | A2u | Eu | T1u | T2u |
A2g | A2g | A1g | Eg | T2g | T1g | A2u | A1u | Eu | T2u | T1u |
Eg | Eg | Eg | A1g+A2g+Eg | T1g+T2g | T1g+T2g | Eu | Eu | A1u+A2u+Eu | T1u+T2u | T1u+T2u |
T1g | T1g | T2g | T1g+T2g | A1g+Eg+T1g+T2g | A2g+Eg+T1g+T2g | T1u | T2u | T1u+T2u) | A1u+Eu+T1u+T2u | A2u+Eu+T1u+T2u |
T2g | T2g | T1g | T1g+T2g | A2g+Eg+T1g+T2g | A1g+Eg+T1g+T2g | T2u | T1u | T1u+T2u) | A2u+Eu+T1u+T2u | A1u+Eu+T1u+T2u |
A1u | A1u | A2u | Eu | T1u | T2u | A1g | A2g | Eg | T1g | T2g |
A2u | A2u | A1u | Eu | T2u | T1u | A2g | A1g | Eg | T2g | T1g |
Eu | Eu | Eu | A1u+A2u+Eu | T1u+T2u | T1u+T2u | Eg | Eg | A1g+A2g+Eg | T1g+T2g | T1g+T2g |
T1u | T1u | T2u | T1u+T2u) | A1u+Eu+T1u+T2u | A2u+Eu+T1u+T2u | T1g | T2g | T1g+T2g | A1g+Eg+T1g+T2g | A2g+Eg+T1g+T2g |
T2u | T2u | T1u | T1u+T2u) | A2u+Eu+T1u+T2u | A1u+Eu+T1u+T2u | T2g | T1g | T1g+T2g | A2g+Eg+T1g+T2g | A1g+Eg+T1g+T2g |
For the Oh point group, the irreducible representation of the dipole operator is T1u. Transitions that are dipole forbidden are indicated by parentheses.
T1u | A1g | A2g | Eg | T1g | T2g | A1u | A2u | Eu | T1u | T2u |
A1g | (T1u) | (T2u) | (T1u+T2u) | (A1u+Eu+T1u+T2u) | (A2u+Eu+T1u+T2u) | (T1g) | (T2g) | (T1g+T2g) | A1g+Eg+T1g+T2g | (A2g+Eg+T1g+T2g) |
A2g | (T2u) | (T1u) | (T1u+T2u) | (A2u+Eu+T1u+T2u) | (A1u+Eg+T1g+T2g) | (T2g) | (T1g) | (T1g+T2g) | (A2g+Eg+T1g+T2g) | A1g+Eg+T1g+T2g |
Eg | (T1u+T2u) | (T1u+T2u) | (2T1u+2T2u) | (A1u+A2u+2Eu+2T1u+2T2u) | (A1u+A2u+2Eu+2T1u+2T2u) | (T1g+T2g) | (T1g+T2g) | (2T1g+2T2g) | A1g+A2g+2Eg+2T1g+2T2g | A1g+A2g+2Eg+2T1g+2T2g |
T1g | (A1u+Eu+T1u+T2u) | (A2u+Eu+T1u+T2u) | (A1u+A2u+2Eu+2T1u+2T2u) | (A1u+A2u+2Eu+4T1u+3T2u) | (A1u+A2u+2Eu+3T1u+4T2u) | A1g+Eg+T1g+T2g | (A2g+Eg+T1g+T2g) | A1g+A2g+2Eg+2T1g+2T2g | A1g+A2g+2Eg+4T1g+3T2g | A1g+A2g+2Eg+3T1g+4T2g |
T2g | (A2u+Eu+T1u+T2u) | (A1u+Eu+T1u+T2u) | (A1u+A2u+2Eu+2T1u+2T2u) | (A1u+A2u+2Eu+4T1u+3T2u) | (A1u+A2u+2Eu+3T1u+4T2u) | (A2g+Eg+T1g+T2g) | A1g+Eg+T1g+T2g | A1g+A2g+2Eg+2T1g+2T2g | A1g+A2g+2Eg+4T1g+3T2g | A1g+A2g+2Eg+3T1g+4T2g |
A1u | (T1g) | (T2g) | (T1g+T2g) | A1g+Eg+T1g+T2g | (A2g+Eg+T1g+T2g) | (T1u) | (T2u) | (T1u+T2u) | (A1u+Eu+T1u+T2u) | (A2u+Eu+T1u+T2u) |
A2u | (T2g) | (T1g) | (T1g+T2g) | (A2g+Eg+T1g+T2g) | A1g+Eg+T1g+T2g | (T2u) | (T1u) | (T1u+T2u) | (A2u+Eu+T1u+T2u) | (A1u+Eg+T1g+T2g) |
Eu | (T1g+T2g) | (T1g+T2g) | (2T1g+2T2g) | A1g+A2g+2Eg+2T1g+2T2g | A1g+A2g+2Eg+2T1g+2T2g | (T1u+T2u) | (T1u+T2u) | (2T1u+2T2u) | (A1u+A2u+2Eu+2T1u+2T2u) | (A1u+A2u+2Eu+2T1u+2T2u) |
T1u | A1g+Eg+T1g+T2g | (A2g+Eg+T1g+T2g) | A1g+A2g+2Eg+2T1g+2T2g | A1g+A2g+2Eg+4T1g+3T2g | A1g+A2g+2Eg+3T1g+4T2g | (A1u+Eu+T1u+T2u) | (A2u+Eu+T1u+T2u) | (A1u+A2u+2Eu+2T1u+2T2u) | (A1u+A2u+2Eu+4T1u+3T2u) | (A1u+A2u+2Eu+3T1u+4T2u) |
T2u | (A2g+Eg+T1g+T2g) | A1g+Eg+T1g+T2g | A1g+A2g+2Eg+2T1g+2T2g | A1g+A2g+2Eg+4T1g+3T2g | A1g+A2g+2Eg+3T1g+4T2g | (A2u+Eu+T1u+T2u) | (A1u+Eu+T1u+T2u) | (A1u+A2u+2Eu+2T1u+2T2u) | (A1u+A2u+2Eu+4T1u+3T2u) | (A1u+A2u+2Eu+3T1u+4T2u) |