Hexagonal: D6h (6/mmm) - Products |
A1g | A2g | B1g | B2g | E1g | E2g | A1u | A2u | B1u | B2u | E1u | E2u | |
A1g | A1g | A2g | B1g | B2g | E1g | E2g | A1u | A2u | B1u | B2u | E1u | E2u |
A2g | A2g | A1g | B2g | B1g | E1g | E2g | A2u | A1u | B2u | B1u | E1u | E2u |
B1g | B1g | B2g | A1g | A2g | E2g | E1g | B1u | B2u | A1u | A2u | E2u | E1u |
B2g | B2g | B1g | A2g | A1g | E2g | E1g | B2u | B1u | A2u | A1u | E2u | E1u |
E1g | E1g | E1g | E2g | E2g | A1g+A2g+E2g | B1g+B2g+E1g | E1u | E1u | E2u | E2u | A1u+A2u+E2u | B1u+B2u+E1u |
E2g | E2g | E2g | E1g | E1g | B1g+B2g+E1g | A1g+A2g+E2g | E2u | E2u | E1u | E1u | B1u+B2u+E1u | A1u+A2u+E2u |
A1u | A1u | A2u | B1u | B2u | E1u | E2u | A1g | A2g | B1g | B2g | E1g | E2g |
A2u | A2u | A1u | B2u | B1u | E1u | E2u | A2g | A1g | B2g | B1g | E1g | E2g |
B1u | B1u | B2u | A1u | A2u | E2u | E1u | B1g | B2g | A1g | A2g | E2g | E1g |
B2u | B2u | B1u | A2u | A1u | E2u | E1u | B2g | B1g | A2g | A1g | E2g | E1g |
E1u | E1u | E1u | E2u | E2u | A1u+A2u+E2u | B1u+B2u+E1u | E1g | E1g | E2g | E2g | A1g+A2g+E2g | B1g+B2g+E1g |
E2u | E2u | E2u | E1u | E1u | B1u+B2u+E1u | A1u+A2u+E2u | E2g | E2g | E1g | E1g | B1g+B2g+E1g | A1g+A2g+E2g |
For the D6h point group, the irreducible representation of the dipole operator is (A2u+E1u). Transitions that are dipole forbidden are indicated by parentheses.
(A2u+E1u) | A1g | A2g | B1g | B2g | E1g | E2g | A1u | A2u | B1u | B2u | E1u | E2u |
A1g | (A2u+E1u) | (A1u+E1u) | (B2u+E2u) | (B1u+E2u) | (A1u+A2u+E1u+E2u) | (B1u+B2u+E1u+E2u) | (A2g+E1g) | A1g+E1g | (B2g+E2g) | (B1g+E2g) | A1g+A2g+E1g+E2g | (B1g+B2g+E1g+E2g) |
A2g | (A1u+E1u) | (A2u+E1u) | (B1u+E2u) | (B2u+E2u) | (A1u+A2u+E1u+E2u) | (B1u+B2u+E1u+E2u) | A1g+E1g | (A2g+E1g) | (B1g+E2g) | (B2g+E2g) | A1g+A2g+E1g+E2g | (B1g+B2g+E1g+E2g) |
B1g | (B2u+E2u) | (B1u+E2u) | (A2u+E1u) | (A1u+E1u) | (B1u+B2u+E1u+E2u) | (A1u+A2u+E1u+E2u) | (B2g+E2g) | (B1g+E2g) | (A2g+E1g) | A1g+E1g | (B1g+B2g+E1g+E2g) | A1g+A2g+E1g+E2g |
B2g | (B1u+E2u) | (B2u+E2u) | (A1u+E1u) | (A2u+E1u) | (B1u+B2u+E1u+E2u) | (A1u+A2u+E1u+E2u) | (B1g+E2g) | (B2g+E2g) | A1g+E1g | (A2g+E1g) | (B1g+B2g+E1g+E2g) | A1g+A2g+E1g+E2g |
E1g | (A1u+A2u+E1u+E2u) | (A1u+A2u+E1u+E2u) | (B1u+B2u+E1u+E2u) | (B1u+B2u+E1u+E2u) | (A1u+A2u+B1u+B2u+3E1u+E2u) | (A1u+A2u+B1u+B2u+E1u+3E2u) | A1g+A2g+E1g+E2g | A1g+A2g+E1g+E2g | (B1g+B2g+E1g+E2g) | (B1g+B2g+E1g+E2g) | A1g+A2g+B1g+B2g+3E1g+E2g | A1g+A2g+B1g+B2g+E1g+3E2g |
E2g | (A1u+A2u+E1u+E2u) | (A1u+A2u+E1u+E2u) | (B1u+B2u+E1u+E2u) | (B1u+B2u+E1u+E2u) | (A1u+A2u+B1u+B2u+E1u+3E2u) | (A1u+A2u+B1u+B2u+3E1u+E2u) | A1g+A2g+E1g+E2g | A1g+A2g+E1g+E2g | (B1g+B2g+E1g+E2g) | (B1g+B2g+E1g+E2g) | A1g+A2g+B1g+B2g+E1g+3E2g | A1g+A2g+B1g+B2g+3E1g+E2g |
A1u | (A2g+E1g) | A1g+E1g | (B2g+E2g) | (B1g+E2g) | A1g+A2g+E1g+E2g | (B1g+B2g+E1g+E2g) | (A2u+E1u) | (A1u+E1u) | (B2u+E2u) | (B1u+E2u) | (A1u+A2u+E1u+E2u) | (B1u+B2u+E1u+E2u) |
A2u | A1g+E1g | (A2g+E1g) | (B1g+E2g) | (B2g+E2g) | A1g+A2g+E1g+E2g | (B1g+B2g+E1g+E2g) | (A1u+E1u) | (A2u+E1u) | (B1u+E2u) | (B2u+E2u) | (A1u+A2u+E1u+E2u) | (B1u+B2u+E1u+E2u) |
B1u | (B2g+E2g) | (B1g+E2g) | (A2g+E1g) | A1g+E1g | (B1g+B2g+E1g+E2g) | A1g+A2g+E1g+E2g | (B2u+E2u) | (B1u+E2u) | (A2u+E1u) | (A1u+E1u) | (B1u+B2u+E1u+E2u) | (A1u+A2u+E1u+E2u) |
B2u | (B1g+E2g) | (B2g+E2g) | A1g+E1g | (A2g+E1g) | (B1g+B2g+E1g+E2g) | A1g+A2g+E1g+E2g | (B1u+E2u) | (B2u+E2u) | (A1u+E1u) | (A2u+E1u) | (B1u+B2u+E1u+E2u) | (A1u+A2u+E1u+E2u) |
E1u | A1g+A2g+E1g+E2g | A1g+A2g+E1g+E2g | (B1g+B2g+E1g+E2g) | (B1g+B2g+E1g+E2g) | A1g+A2g+B1g+B2g+3E1g+E2g | A1g+A2g+B1g+B2g+E1g+3E2g | (A1u+A2u+E1u+E2u) | (A1u+A2u+E1u+E2u) | (B1u+B2u+E1u+E2u) | (B1u+B2u+E1u+E2u) | (A1u+A2u+B1u+B2u+3E1u+E2u) | (A1u+A2u+B1u+B2u+E1u+3E2u) |
E2u | (B1g+B2g+E1g+E2g) | (B1g+B2g+E1g+E2g) | A1g+A2g+E1g+E2g | A1g+A2g+E1g+E2g | A1g+A2g+B1g+B2g+E1g+3E2g | A1g+A2g+B1g+B2g+3E1g+E2g | (A1u+A2u+E1u+E2u) | (A1u+A2u+E1u+E2u) | (B1u+B2u+E1u+E2u) | (B1u+B2u+E1u+E2u) | (A1u+A2u+B1u+B2u+E1u+3E2u) | (A1u+A2u+B1u+B2u+3E1u+E2u) |