University of Exeter

Tetragonal: D4h (4/mmm) - Products

Exeter Symmetry Pages

Irreducible Representation Products:

product A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu
A1g A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu
A2g A2g A1g B2g B1g Eg A2u A1u B2u B1u Eu
B1g B1g B2g A1g A2g Eg B1u B2u A1u A2u Eu
B2g B2g B1g A2g A1g Eg B2u B1u A2u A1u Eu
Eg Eg Eg Eg Eg A1g+A2g+B1g+B2g Eu Eu Eu Eu A1u+A2u+B1u+B2u
A1u A1u A2u B1u B2u Eu A1g A2g B1g B2g Eg
A2u A2u A1u B2u B1u Eu A2g A1g B2g B1g Eg
B1u B1u B2u A1u A2u Eu B1g B2g A1g A2g Eg
B2u B2u B1u A2u A1u Eu B2g B1g A2g A1g Eg
Eu Eu Eu Eu Eu A1u+A2u+B1u+B2u Eg Eg Eg Eg A1g+A2g+B1g+B2g


Dipole Transition Products:

For the D4h point group, the irreducible representation of the dipole operator is (A2u+Eu). Transitions that are dipole forbidden are indicated by parentheses.

product(A2u+Eu)product A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu
A1g (A2u+Eu) (A1u+Eu) (B2u+Eu) (B1u+Eu) (A1u+A2u+B1u+B2u+Eu) (A2g+Eg) A1g+E (B2g+Eg) (B1g+Eg) A1g+A2g+B1g+B2g+Eg
A2g (A1u+Eu) (A2u+Eu) (B1u+Eu) (B2u+Eu) (A1u+A2u+B1u+B2u+Eu) A1g+E (A2g+Eg) (B1g+Eg) (B2g+Eg) A1g+A2g+B1g+B2g+Eg
B1g (B2u+Eu) (B1u+Eu) (A2u+Eu) (A1u+Eu) (A1u+A2u+B1u+B2u+Eu) (B2g+Eg) (B1g+Eg) (A2g+Eg) A1g+E A1g+A2g+B1g+B2g+Eg
B2g (B1u+Eu) (B2u+Eu) (A1u+Eu) (A2u+Eu) (A1u+A2u+B1u+B2u+Eu) (B1g+Eg) (B2g+Eg) A1g+E (A2g+Eg) A1g+A2g+B1g+B2g+Eg
Eg (A1u+A2u+B1u+B2u+Eu) (A1u+A2u+B1u+B2u+Eu) (A1u+A2u+B1u+B2u+Eu) (A1u+A2u+B1u+B2u+Eu) (A1u+A2u+B1u+B2u+4Eu) A1g+A2g+B1g+B2g+Eg A1g+A2g+B1g+B2g+Eg A1g+A2g+B1g+B2g+Eg A1g+A2g+B1g+B2g+Eg A1g+A2g+B1g+B2g+4Eg
A1u (A2g+Eg) A1g+E (B2g+Eg) (B1g+Eg) A1g+A2g+B1g+B2g+Eg (A2u+Eu) (A1u+Eu) (B2u+Eu) (B1u+Eu) (A1u+A2u+B1u+B2u+Eu)
A2u A1g+E (A2g+Eg) (B1g+Eg) (B2g+Eg) A1g+A2g+B1g+B2g+Eg (A1u+Eu) (A2u+Eu) (B1u+Eu) (B2u+Eu) (A1u+A2u+B1u+B2u+Eu)
B1u (B2g+Eg) (B1g+Eg) (A2g+Eg) A1g+E A1g+A2g+B1g+B2g+Eg (B2u+Eu) (B1u+Eu) (A2u+Eu) (A1u+Eu) (A1u+A2u+B1u+B2u+Eu)
B2u (B1g+Eg) (B2g+Eg) A1g+E (A2g+Eg) A1g+A2g+B1g+B2g+Eg (B1u+Eu) (B2u+Eu) (A1u+Eu) (A2u+Eu) (A1u+A2u+B1u+B2u+Eu)
Eu A1g+A2g+B1g+B2g+Eg A1g+A2g+B1g+B2g+Eg A1g+A2g+B1g+B2g+Eg A1g+A2g+B1g+B2g+Eg A1g+A2g+B1g+B2g+4Eg (A1u+A2u+B1u+B2u+Eu) (A1u+A2u+B1u+B2u+Eu) (A1u+A2u+B1u+B2u+Eu) (A1u+A2u+B1u+B2u+Eu) (A1u+A2u+B1u+B2u+4Eu)