|
Tetragonal: D4h (4/mmm) - Products |
|
![]() |
A1g | A2g | B1g | B2g | Eg | A1u | A2u | B1u | B2u | Eu |
| A1g | A1g | A2g | B1g | B2g | Eg | A1u | A2u | B1u | B2u | Eu |
| A2g | A2g | A1g | B2g | B1g | Eg | A2u | A1u | B2u | B1u | Eu |
| B1g | B1g | B2g | A1g | A2g | Eg | B1u | B2u | A1u | A2u | Eu |
| B2g | B2g | B1g | A2g | A1g | Eg | B2u | B1u | A2u | A1u | Eu |
| Eg | Eg | Eg | Eg | Eg | A1g+A2g+B1g+B2g | Eu | Eu | Eu | Eu | A1u+A2u+B1u+B2u |
| A1u | A1u | A2u | B1u | B2u | Eu | A1g | A2g | B1g | B2g | Eg |
| A2u | A2u | A1u | B2u | B1u | Eu | A2g | A1g | B2g | B1g | Eg |
| B1u | B1u | B2u | A1u | A2u | Eu | B1g | B2g | A1g | A2g | Eg |
| B2u | B2u | B1u | A2u | A1u | Eu | B2g | B1g | A2g | A1g | Eg |
| Eu | Eu | Eu | Eu | Eu | A1u+A2u+B1u+B2u | Eg | Eg | Eg | Eg | A1g+A2g+B1g+B2g |
For the D4h point group, the irreducible representation of the dipole operator is (A2u+Eu). Transitions that are dipole forbidden are indicated by parentheses.
(A2u+Eu)![]() |
A1g | A2g | B1g | B2g | Eg | A1u | A2u | B1u | B2u | Eu |
| A1g | (A2u+Eu) | (A1u+Eu) | (B2u+Eu) | (B1u+Eu) | (A1u+A2u+B1u+B2u+Eu) | (A2g+Eg) | A1g+E | (B2g+Eg) | (B1g+Eg) | A1g+A2g+B1g+B2g+Eg |
| A2g | (A1u+Eu) | (A2u+Eu) | (B1u+Eu) | (B2u+Eu) | (A1u+A2u+B1u+B2u+Eu) | A1g+E | (A2g+Eg) | (B1g+Eg) | (B2g+Eg) | A1g+A2g+B1g+B2g+Eg |
| B1g | (B2u+Eu) | (B1u+Eu) | (A2u+Eu) | (A1u+Eu) | (A1u+A2u+B1u+B2u+Eu) | (B2g+Eg) | (B1g+Eg) | (A2g+Eg) | A1g+E | A1g+A2g+B1g+B2g+Eg |
| B2g | (B1u+Eu) | (B2u+Eu) | (A1u+Eu) | (A2u+Eu) | (A1u+A2u+B1u+B2u+Eu) | (B1g+Eg) | (B2g+Eg) | A1g+E | (A2g+Eg) | A1g+A2g+B1g+B2g+Eg |
| Eg | (A1u+A2u+B1u+B2u+Eu) | (A1u+A2u+B1u+B2u+Eu) | (A1u+A2u+B1u+B2u+Eu) | (A1u+A2u+B1u+B2u+Eu) | (A1u+A2u+B1u+B2u+4Eu) | A1g+A2g+B1g+B2g+Eg | A1g+A2g+B1g+B2g+Eg | A1g+A2g+B1g+B2g+Eg | A1g+A2g+B1g+B2g+Eg | A1g+A2g+B1g+B2g+4Eg |
| A1u | (A2g+Eg) | A1g+E | (B2g+Eg) | (B1g+Eg) | A1g+A2g+B1g+B2g+Eg | (A2u+Eu) | (A1u+Eu) | (B2u+Eu) | (B1u+Eu) | (A1u+A2u+B1u+B2u+Eu) |
| A2u | A1g+E | (A2g+Eg) | (B1g+Eg) | (B2g+Eg) | A1g+A2g+B1g+B2g+Eg | (A1u+Eu) | (A2u+Eu) | (B1u+Eu) | (B2u+Eu) | (A1u+A2u+B1u+B2u+Eu) |
| B1u | (B2g+Eg) | (B1g+Eg) | (A2g+Eg) | A1g+E | A1g+A2g+B1g+B2g+Eg | (B2u+Eu) | (B1u+Eu) | (A2u+Eu) | (A1u+Eu) | (A1u+A2u+B1u+B2u+Eu) |
| B2u | (B1g+Eg) | (B2g+Eg) | A1g+E | (A2g+Eg) | A1g+A2g+B1g+B2g+Eg | (B1u+Eu) | (B2u+Eu) | (A1u+Eu) | (A2u+Eu) | (A1u+A2u+B1u+B2u+Eu) |
| Eu | A1g+A2g+B1g+B2g+Eg | A1g+A2g+B1g+B2g+Eg | A1g+A2g+B1g+B2g+Eg | A1g+A2g+B1g+B2g+Eg | A1g+A2g+B1g+B2g+4Eg | (A1u+A2u+B1u+B2u+Eu) | (A1u+A2u+B1u+B2u+Eu) | (A1u+A2u+B1u+B2u+Eu) | (A1u+A2u+B1u+B2u+Eu) | (A1u+A2u+B1u+B2u+4Eu) |