Orthorhombic: D2h (mmm) - Products |
Ag | B1g | B2g | B3g | Au | B1u | B2u | B3u | |
Ag | Ag | B1g | B2g | B3g | Au | B1u | B2u | B3u |
B1g | B1g | Ag | B3g | B2g | B1u | Au | B3u | B2u |
B2g | B2g | B3g | Ag | B1g | B2u | B3u | Au | B1u |
B3g | B3g | B2g | B1g | Ag | B3u | B2u | B1u | Au |
Au | Au | B1u | B2u | B3u | Ag | B1g | B2g | B3g |
B1u | B1u | Au | B3u | B2u | B1g | Ag | B3g | B2g |
B2u | B2u | B3u | Au | B1u | B2g | B3g | Ag | B1g |
B3u | B3u | B2u | B1u | Au | B3g | B2g | B1g | Ag |
For the D2h point group, the irreducible representation of the dipole operator is B1u+B2u+B3u. Transitions that are dipole forbidden are indicated by parentheses.
(B1u+B2u+B3u) | Ag | B1g | B2g | B3g | Au | B1u | B2u | B3u |
Ag | (B1u+B2u+B3u) | (Au+B2u+B3u) | (Au+B1u+B3u) | (Au+B1u+B2u) | (B1g+B2g+B3g) | Ag+B2g+B3g | Ag+B1g+B3g | Ag+B1g+B2g |
B1g | (Au+B2u+B3u) | (B1u+B2u+B3u) | (Au+B1u+B2u) | (Au+B1u+B3u) | Ag+B2g+B3g | (B1g+B2g+B3g) | Ag+B1g+B2g | Ag+B1g+B3g |
B2g | (Au+B1u+B3u) | (Au+B1u+B2u) | (B1u+B2u+B3u) | (Au+B2u+B3u) | Ag+B1g+B3g | Ag+B1g+B2g | (B1g+B2g+B3g) | Ag+B2g+B3g |
B3g | (Au+B1u+B2u) | (Au+B1u+B3u) | (Au+B2u+B3u) | (B1u+B2u+B3u) | Ag+B1g+B2g | Ag+B1g+B3g | Ag+B2g+B3g | (B1g+B2g+B3g) |
Au | (B1g+B2g+B3g) | Ag+B2g+B3g | Ag+B1g+B3g | Ag+B1g+B2g | (B1u+B2u+B3u) | (Au+B2u+B3u) | (Au+B1u+B3u) | (Au+B1u+B2u) |
B1u | Ag+B2g+B3g | (B1g+B2g+B3g) | Ag+B1g+B2g | Ag+B1g+B3g | (Au+B2u+B3u) | (B1u+B2u+B3u) | (Au+B1u+B2u) | (Au+B1u+B3u) |
B2u | Ag+B1g+B3g | Ag+B1g+B2g | (B1g+B2g+B3g) | Ag+B2g+B3g | (Au+B1u+B3u) | (Au+B1u+B2u) | (B1u+B2u+B3u) | (Au+B2u+B3u) |
B3u | Ag+B1g+B2g | Ag+B1g+B3g | Ag+B2g+B3g | (B1g+B2g+B3g) | (Au+B1u+B2u) | (Au+B1u+B3u) | (Au+B2u+B3u) | (B1u+B2u+B3u) |