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EXEOJTER I.4 Damped simple harmonic motion

If thereis ............. to motion then the spring / mass (or
pendulum) will gradually lose ...............

To model this, we have to introduce | The retarding force (in this
- I into our SHM analysis) is proportional to the
analysis. velocity

(b is a constant)
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Balancing forces;
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EXETER So, for damped motion, we

mx+bx+kx=0

have the equation of motion;

To solve it, we try a solution
of the form;

(C will have the dimensions of length, a of inverse time.)

Differentiate w.r.t time;

Then .............. into top
equation;
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Simplifying;
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EXE{UTEP\ The solution

- C =0is trivial;

Therefore, we look for
solutions to

We can use the standard
............. equation for this;

And when simplified
slightly;

Therefore, the solution to the
equation of motion for this
damped oscillator is;
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Or, slightly more
3 simply,

We find this solution for x gives us

three regimes of physical motion. =
b + [k ¢
4m
x=Ce ™ .
f The problem .......................ooo....
= 3 This can be;
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=~ ‘;" i) the systemiis ....................... ; the damping term dominates over the
o G stiffresstermanda .......................... motion results.
5<%
> 1) I ; when the damping term and stiffness term are
o equal, the system returns to zero amplitude in ..........cooeeveeieeieennnn....
iii) the systemis ..................l and gives oscillatory (simple
4 harmMONIC) BUL ....ooevveeee e
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i Case i): Heavy damping (damping term
EXETER

(Pain, p31). dominates over stiffness term )

Thisleadsto .........................
motion;

The equation to predict the b 4 (4‘ i—L)t
displacement of our object is; X = Ce‘m e

Under certain boundary

_bt . 2 5
conditions, it can be re- x =C'e 2t Smh((b—2 —L)z tj
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expressed as; 4m”  m
A (Pain, p31).
£
3
r s This illustrates the non-
() . .
a oscillatory behavior of a
..................... oscillator.
S , time
UL Case ii): Critical damping (damping term
EXETER (See Pain, p32). €quals stiffness term )
Again this case leads to
B L motion;
=8
£2  This time, instead of BRI = el
gg our original equation; x=Ce ™ e
E’ g’ b (since a has equal roots
S E  We canre-expressitas; X = (A + Bt)e m Pain, p32).
28
> k- -
o 2 g A oscillator returns to
°S g equilibrium ...
8- &
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time (albeit very damped oscillation).
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Case ii): Light damping (stiffness term

dominates over damping term)
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This case leads to
T damped SHM

The most common examples occur for this last type of
case; i.e. when the damping is light.

B0 et e,

This case demands a rigorous analysis.....

But, there is a problem!
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So rewrite as;

Therefore the solution to the
equation of motion for this case is;

Or for simplicity;

ie.the ................ is

Where; o = |k __b’ =P modified because of
m 4m’ the ................. !
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can be written as

If we take the ......... ...... of this (which is

the ... part), then we get
the solution of the form; !

To allow for motion starting anywhere in
thecycle,we ..., (0)

SO re- write as; —bt
x=Ce ™

Equally, the solution could

(Pain p33).

(cos 't + )

be written as;




