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Magnetic Constants and Materials

Like dielectrics, magnetic materials can have very complicated properties. A general expression for the

components of the magnetisation M  at a point where the magnetic field intensity is H is

  

Mi = M0i + χ ij
(1)Hj

j
∑ + χ ijk

(2)Hj Hk
jk
∑ + χ ijkl

(3) Hj Hk Hl
jkl
∑ +L.

An isotropic material has off-diagonal elements equal to zero, diagonal elements that are equal to each

other, and no spontaneous magnetisation M0i. In this special case the above expression reduces to a

simple power-series expansion

  Mi = M0i + χ (1)Hi + χ (2)Hi
2 +L

where χ (n) = χ11
(n) = χ22

(n) = χ33
(n) . The terms of order H2 and above can be neglected for many materials

in moderate fields in which circumstances

M = χH

where the scalar constant χ is called the magnetic susceptibility of the material. If this is an adequate

approximation then

B = µ0 H + M( ) = µ0 1+χ( )H = µH

and µ is the permeability of the material. The abbreviation LIH (linear, isotropic and homogeneous) is

often used in this context. The relative permeability µr is defined by

µ r = µ
µ0

= 1 + χ .

All these “constants” are frequency dependent to some extent because it takes a finite time for the

dipoles to respond to the magnetic field.

Diamagnetism

All atoms have a diamagnetic response to some extent, although the effect will be swamped by the

larger paramagnetic or ferromagnetic response if it is present. In classical terms the electrons in filled

atomic shells are treated as current loops circling about an axis along the direction of the magnetic field

B. If the orbit radii were not to change as the field increases from zero then the energy of the

clockwise loops would decrease and that of the anticlockwise loops would increase. The atom

responds by shrinking the radius of the clockwise loop, reducing its moment, and increasing the

moment associated with the anticlockwise orbit. The net effect is that the atom acquires a small dipole

moment characterised by a negative susceptibility χ ~ −10−5 , which is independent of temperature.
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The quantum mechanical treatment of the problem is a text-book exercise in perturbation theory using

a Hamiltonian that is equivalent to the classical magnetic energy of a current loop of area A, i.e.

  H ∝ x2 + y2( )Bz
2

and a useful trick to help calculate expectation values is to spot that x2 + y2 = 2
3 r2 .

Many pure substances are diamagnetic, e.g. argon, silicon, ammonia, Araldite™ and metals with

atomic numbers high enough for the diamagnetism of the core electrons to swamp the paramagnetism

associated with the band structure.

Paramagnetism

Substances containing ions with non-zero spins are paramagnets and typically have small positive

susceptibilities with χ <<1. An ion or atom with an incomplete electron shell will have a non-zero net

spin and therefore a non-zero magnetic dipole moment. If its total spin quantum number J were very

large then an atom would behave as though it had a classical magnetic dipole moment and the

susceptibility would be described by the Langevin function, as was the case with paraelectric

materials. However, the quantum numbers involved are usually small and a quantum mechanical

treatment is necessary. In the common case of a Ji=i1/2 spin the calculation reveals that the spin has

two eigenstates in an applied field B and gives the energies and component of magnetic moment along

the z-axis (defined by the direction of the applied field) as

E↑ = − 1
2 gµBBz E↓ = + 1

2 gµBBz

m↑ = + 1
2 gµB m↓ = − 1

2 gµB

where gi=i2 is the gyromagnetic ratio of the electron, and µBi=i9.274i×i10–24
iJT–1 is the Bohr magneton.

The spins are weakly interacting, and hence treated as independent, so the occupation probability of

the states has a Boltzmann distribution. From this the mean dipole moment along the z-axis for an

ensemble of such spins is found. The outcome is that the magnetisation M  of a sample of number

density N atoms each having a total spin J in an applied field B at temperature T is

M = B̂NJgµBFJ JgµBB / kBT( )
where the function FJ is called the Brillouin function (figure 1) and becomes equal to the Langevin

function in the classical limit of large J. If the field is not too large, and the temperature is not too low,

a paramagnetic sample can be treated has having a linear susceptibility given, to an accurate

approximation, by

χ = µ0
∂M

∂B




 B=0

= Nµ0g2µB
2 J J +1( )

3kBT
.
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Figure 1. This figure shows the Brillouin function

for various values of total spin quantum number J.

(a) (b)

Figure 2. Schematic diagram of a

domain structure with (a) Mi=i0 (b) Mi>i0

Experiments on real samples show that there

usually are interactions between spins which

must be accounted for by a slightly modified

expression

χ = Nµ0g2µB
2 J J +1( )

3kB T − TC( ) for T > TC

where TC is known as the Curie temperature and

increases in magnitude with the strength of the

interactions. The singularity in the suscept-ibility

that occurs at the Curie temperature indicates that

the sample undergoes a phase transition at this

temperature.

Do not confuse the behaviour described above

with the phenonemon known as Pauli para-

magnetism which arises in some metals as a

result of the structure of part filled bands. This can also give rise to small positive values of

susceptibility but has a weak temperature dependence.

Ferromagnetism

Below their Curie temperature paramagnetic substances order, i.e. the dipoles arrange themselves in

regular patterns. The most important of these patterns is known as ferromagnetic order in which each

dipole tends to point in the same direction as its neighbour. The observed behaviour suggests that

there is a strong interaction between adjacent dipoles tending to align them, but it drops off very

rapidly with distance and only affects nearest neighbour pairs. This short-range exchange interaction,

which needs quantum mechanics to explain its details, competes with the long-range dipole-dipole

interaction which favours antiparallel arrangements having zero net moment. The resultant minimum

energy arrangement of dipoles is called a domain

structure (figure 2a) and has no net magnetisation on

scales much longer than the size of a single domain,

but uniform magnetisation within a domain. The size

of these domains varies widely between materials but

is usually somewhere in the range 0.1iµm–0.1imm.

Domain wall movements dominate the magnetic

behaviour of ferromagnetic materials. Starting with an

initially demagnetised sample with Mi=i0 and Bi=i0 an
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Figure 3. The M–B loop of a ferromagnet.


