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Two-dimensional Dirac particles in 
a Pöschl-Teller waveguide
R. R. Hartmann  1 & M. E. Portnoi  2,3

We obtain exact solutions to the two-dimensional (2D) Dirac equation for the one-dimensional Pöschl-
Teller potential which contains an asymmetry term. The eigenfunctions are expressed in terms of Heun 
confluent functions, while the eigenvalues are determined via the solutions of a simple transcendental 
equation. For the symmetric case, the eigenfunctions of the supercritical states are expressed as 
spheroidal wave functions, and approximate analytical expressions are obtained for the corresponding 
eigenvalues. A universal condition for any square integrable symmetric potential is obtained for the 
minimum strength of the potential required to hold a bound state of zero energy. Applications for 
smooth electron waveguides in 2D Dirac-Weyl systems are discussed.

The Pöschl-Teller potential1 plays an important role in many fields of physics2 from modeling diatomic molecules 
and quantum many-body systems3–5, to applications in astrophysics6, 7, optical waveguides8 and quantum wells9, 10,  
through to Bose-Einstein and Fermionic condensates11, 12, and supersymmetric quantum mechanics13. For the 
one-dimensional Schrödinger equation, the hyperbolic symmetric form can be solved in terms of associated 
Legendre polynomials and the eigenvalues are known explicitly1, 14. We consider an analogous relativistic problem, 
that of a two-dimensional Dirac particle, confined by a one-dimensional Pöschl-Teller potential. Several solutions 
have been obtained for the Dirac equation with central Pöschl-Teller potentials15–21, and the hyperbolic-secant 
potential is also known to admit analytic solutions for both the one and two-body one-dimensional Dirac prob-
lems22–24. Modified Pöschl-Teller potential potentials have also been employed in numerical simulations of poten-
tial barriers in bilayer graphene25.

With the recent explosion of research in Dirac materials26 there has been a renewed interest in quasi-relativistic 
phenomena considered in condensed matter systems of different dimensionalities. This is due to the fact that 
the same equations which govern Dirac fermions in relativity, map directly to the equations of motion describ-
ing the quasi-particles in systems such as graphene27, carbon nanotubes28, topological insulators29–31 transi-
tion metal dichalcogenides32 and 3D Weyl semimetals33. Massless Dirac particles are notoriously difficult to 
confine; however, it has been demonstrated that certain types of one-dimensional electrostatic waveguides in 
graphene, possess zero energy-modes which are truly confined within the waveguide22, 23, and that the num-
ber of these zero energy-modes is equal to the number of supercritical states (i.e. bound states whose energy, 
E = −M, where M is the particle’s effective mass). Transmission resonances and supercriticality of Dirac par-
ticles through one-dimensional potentials have been studied extensively34–45. The majority of studies model 
top-gated carbon-based nanostructures using abrupt potentials46–56. However, experimental potential profiles 
vary smoothly over many lattice constants, with even the smallest of gate generated potentials being far from 
square57. There is also some controversy concerning waveguides which are defined by smoothly decaying, square 
integrable functions, which decay at large distances as 1/xn, where n > 1. Numerical experiments imply that such 
waveguides always contain a zero-energy mode58, whereas analysis based upon relativistic Levinson theorem, says 
there is a minimum potential strength required to observe a zero-energy mode45, 59–62. Our result supports the 
latter, and we demonstrate this through a simple analysis of supercritical states of zero energy.

In 2D Dirac materials, the low-energy spectrum of the charge carriers can be described by a Dirac 
Hamiltonian63 of the form

 σ σ σ= + +ˆ ˆ ˆH v k s k k( ), (1)x x y y z zK
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∂
k̂ iy y

, σx,y,z are the Pauli spin matrices. v plays the role of the speed of light and kz is pro-
portional to the particle in-plane effective mass. In graphene, the charge carriers are massless, kz = 0, and the 
dispersion is linear, v = vF ≈ 106 m/s is the Fermi velocity and sK has the value of ±1 for the K and K′ valley respec-
tively64. For narrow-gap nanotubes and certain types of graphene nanoribbons65, 66 the operator k̂y can by replaced 
by the number ky = Eg/(2ħvF), which in the absence of applied field is fixed by geometry, where Eg is the value of 
the bandgap. For nanotubes, Eg can be controlled by applying a magnetic field along the nanotube axis24, 67–70. 
When kz is finite, Eq. (1) can be used as a simple model for silicene71 or Weyl semimetal26, 72. It has also been pro-
posed that when graphene is subjected to a periodic potential on the lattice scale, for example, graphene on top of 
a lattice-matched hexagonal boron nitride73 the Dirac fermions acquire mass with Eg = 2ħvFkz being of the order 
of 53 meV.

In what follows we shall consider a particle described by the Hamiltonian (1) subjected to a one-dimensional 
potential U(x), which varies on a scale much larger than the lattice constant of the corresponding Dirac mate-
rial, therefore allowing us to neglect inter-valley scattering for the case of graphene. We shall also set sK = 1, and 
note that the other valley’s wave function can be obtained by exchanging ky → −ky. The Hamiltonian acts on the 
two-component Dirac wavefunction

Ψ =




Ψ
Ψ






e
x
x

( )
( ) (2)

ik y A

B

y

to yield the coupled first-order differential equations

− + Ψ −




+ ∆


Ψ =



V E M i d
dx

( ) 0
(3)A B

and

− − Ψ −




− ∆


Ψ = .



V E M i d
dx

( ) 0
(4)B A

where =x x L/  and L is a constant. V = UL/ħvF and the charge carrier energy, ε, have been scaled such that 
E = εL/ħvF. The charge carriers propagate along the y-direction with wave vector ky = Δ/L, which is measured 
relative to the Dirac point, ΨA(x) and ΨB(x) are the wavefunctions associated with the A and B sublattices of 
graphene and finally M = kzL represents an effective mass in dimensionless units.

In what follows we consider the relativistic quasi-one-dimensional Pöschl-Teller potential problem which can 
be applied to describe e.g. graphene waveguides. We obtain the exact energy eigenfunctions for this potential and 
formulate a method for calculating the eigenvalues of the bound states. We then analyze the energy-spectrum 
of the symmetric Pöschl-Teller potential and obtain expressions for the eigenvalues of the supercritical states. 
By analyzing the zero-energy supercritical states we obtain a universal threshold condition for the minimum 
potential strength required for a potential to possess a zero-energy mode, for any square-integrable potential. We 
also show that the eigenfunctions in the non-relativistic limit restore the one-dimensional Schrödinger equation 
solutions. Finally, we analyze the eigenvalue spectrum for the modified Pöschl-Teller potential which includes an 
asymmetry term.

Relativistic one-dimensional Pöschl-Teller problem
In this section we consider the potential

= − − + + V a x b x
4

[1 tanh ( )]
2

[1 tanh( )], (5)
2

which is a linear combination of the symmetric Pöschl-Teller potential with an additional term which enables 
the introduction of asymmetry74. This potential belongs to the class of quantum models, which are quasi-exactly 
solvable23, 75–81, where only some of the eigenfunctions and eigenvalues are found explicitly. The depth of the well 
is given by – (a − b)2/4a, and the potential width is characterized by the parameter L, which was introduced after 
Eq. (4). For the case of b = 0, the potential transforms into the symmetric Pöschl-Teller potential, while if a = 0, 
the potential is a smooth potential step, which can be used to model a p-n junction82, 83. The symmetric and asym-
metric forms of the potential are plotted in Fig. 1.

Substituting ΨA = (Ψ1 + Ψ2)/2 and ΨB = (Ψ1 − Ψ2)/2 allows Eqs (3,4) to be reduced to a single second-order 
differential equation in Ψ1 (Ψ2)







− − − ∆ +





Ψ +

Ψ
=




V E M isdV
dx

d

dx
( ) 0,

(6)j
j2 2 2

2

2

where s = −(−1)j and j = 1, 2 correspond to the spinor components Ψ1 and Ψ2 respectively. By making the natural 
change of variable = + Z x[1 tanh( )]/2 and using the wave function of the form ψΨ = −pZ Z Z Zexp( ) (1 ) ( )j

n m
j  

allows Eq. (6) to be reduced to the Heun confluent equation84 in variable Z:
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where n = β/2, m = γ/2, P = α/2, ∆ = + ∆~ M2 2 2, sα,β,γ = ±1 and the parameters α, β, γ, δs and ηs are: α = iasα, 
β = ∆ −β

~s E2 2 , γ = ∆ − −γ
~s E b( )2 2 , δ = −( )a b iss

1
2

 and ηs = β2/2 − (a − b)(E − is)/2. This same method 
of reducing a system of coupled first-order differential equations to the Heun confluent equation has been 
exploited to solve various generalisations of the quantum Rabi model85, and notably the quasi-exact solutions of 
the Pöschl-Teller family potentials and Rabi systems are closely related86. In some instances, the resulting Heun 
confluent functions can be terminated as a finite polynomial23, 87, allowing particular eigenvalues to be obtained 
exactly, providing the parameters obey special relations. When this is not the case, the energy spectrum can be 
obtained fully via the Wronskian method23, 85, 88, 89, which is the method we shall utilize.

Equation (7) has regular singularities at Z = 0 and 1, and an irregular one at Z = ∞ which is outside the 
domain of x . The solutions to Eq. (7) are given by

∑ψ α β γ δ η α β γ δ η= + −β−

α β γ
α β γ α β γ

A H Z B Z H Z( , , , , ; ) ( , , , , ; ),
(8)

j
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, , , , , ,

where 
α β γ

Aj s s s, , ,  and 
α β γ

Bj s s s, , ,  are constants, and H is the Heun confluent function90, which has a value of 1 at the 
origin. For |Z| < 1, H(α, β, γ, δs, ηs, Z) = (1 − Z)−γH(α,β, −γ,δs,ηs,Z) and α β γ δ η =H Z( , , , , , )s s

α α β γ δ η− −Z H Zexp( ) ( , , , , , )s s , therefore, as expected from the general theory of second order differential 
equations, the full solution is given by a linear combination of just two linearly independent functions

α β γ δ η α β γ δ η αΨ = 
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where β is not an integer. It should be noted that when a = 0 and α = δ = 0, the Heun confluent functions appear-
ing in Eq. (9) reduces to a Gauss hypergeometric functions and for the case of a massless particle Eq. (9) reduce 
down to the solutions obtained in ref. 82. If, however, β is an integer then H(α, −β, γ, δ, ηs, Z) is divergent and 
Bi has to be set to zero, and the second linearly independent solution can be constructed from a series expansion 
about the point 1 − Z. The solutions to the Heun confluent equation thus far have been given as power series 
expansions about the point Z = 0. However, these power series rapidly diverge as Z approaches the second singu-
larity; therefore, at Z = 1 we must construct solutions as power series expansions in variable 1 − Z:

α γ β δ η δ α γ β

δ η δ α

Ψ = − − + − − + − −
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The constants Ci and Di are found by matching the two power series expansions and their derivatives at Z0 where 
0 < Z0 < 1.

Figure 1. The solid line shows the modified Pöschl-Teller potential, Eq. (5), for the symmetric case of 
a = 24 and b = 0. The dashed line shows the asymmetric potential for the case of a = 24 and b = 2. The 8 
solid horizontal lines are the bound state energy levels for the symmetric potential at Δ = 4 and the 6 dashed 
horizontal lines are the bound state energy levels for the asymmetric potential at Δ = 4.
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For bound states, we require that ∆ >~ E2 2 and ∆ > −~ E b( )2 2. These conditions ensure that the bound states 
are inside the effective bandgap (which accounts for the motion along the y-axis). As x → −∞, Z → 0 and as 
x → ∞, Z → 1, therefore we may write the asymptotic expressions of Ψj as

Ψ = +β β

→

−( ) A Z B Zlim (11)Z
j j j

0

1
2

1
2

and

αΨ = 



− + − 









.γ γ
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−( ) C Z D Zlim (1 ) (1 ) exp 1
2 (12)Z

j j j
1

1
2

1
2

Therefore, for bound states, Bi (Ai) is zero for sβ = 1 (sβ = −1) and Di (Ci) is zero for sγ = 1 (sγ = −1). Clearly the 
choice of sβ and sγ is arbitrary, therefore, from hereon in we set both to 1 unless otherwise stated. In this instance, 
the energy eigenvalues are found from the condition:
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where 0 < Z0 < 1.

Symmetric Pöschl-Teller potential solutions. In general, relating Ψ1 to Ψ2 is non-trivial, since neither 
a known expression exists which connects Heun confluent functions about two different singular points for arbi-
trary parameters, nor is there a general expression relating the derivative of the confluent Heun function to 
other confluent Heun functions, though particular instances have been obtained91, 92. However, for the symmetric 
Pöschl-Teller potential (i.e. b = 0) one can obtain the relation:

α β γ δ η
β α β γ δ η

β γ β α δ

α β γ δ η
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Therefore, = Ω
β

A As2 1 and = Ω− β
B Bs2 1, where βΩ = + + ∆

β
E i M i( )/( )s .

In pristine graphene, only the symmetric form of Eq. (5) will contain non-leaky modes at zero energy. 
Non-zero-energy modes will have a finite lifetime since they can always couple to continuum states outside of 
the waveguide, whereas zero-energy modes are fully confined since the density of states vanishes at zero energy 
outside of the well. Asymmetric forms of Eq. (5) never contain truly bound modes since the density of states 
cannot vanish on both sides of the potential simultaneously. Notably, this is somewhat counterintuitive as for the 
Schrödinger problem a symmetric potential always contains a bound state, which can be removed by asymmetry. 
The emergence of bound states for a relativistic problem with an infinitely wide barrier is a manifestation of the 
Klein tunneling phenomenon22, 23.

We shall now consider the symmetric form of Eq. (5) for massless particles. Accordingly, we set b = 0 and 
M = 0, and in this instance the symmetrized real functions22, 23, are given by ΨI = ΨA + iΨB and ΨII = ΨA − iΨB, 
where

α θ θ
Ψ =






Φ



 −










−








β γRA Z i Z Z iexp 1
2 2

(1 ) exp
2 (15)A 1

1
2

1
2

and

α θ θ
Ψ =






Φ



 −










−








β γIiA Z i Z Z iexp 1
2 2

(1 ) exp
2

,
(16)B 1

1
2

1
2

where Φ = H(α, β, γ, δ1, η1, Z) and θ β= −Etan / . By employing the identity Eq. (14), the derivatives appearing in 
Eq. (13) can be expressed in terms of Heun confluent functions. It immediately follows that at the origin 
Ψ Ψ + Ψ Ψ =∗ ∗ 0I II I II , which in terms of the functions ΨA and ΨB yields:

Ψ
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2
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,
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where Z = 1/2 corresponds to x = 0. Substituting Eq. (15) and Eq. (16) into Eq. (17) results in the condition
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From Eq. (15) and Eq. (16), θΨ = Ψ −∗ ∗A A iexp( )A A1 1  and θΨ = − Ψ −∗ ∗A A iexp( )B B1 1 . Therefore, the condi-
tion from which the eigenvalues of the spectrum are determined, Eq. (17), can be written as Ψ + Ψ =i( )A B Z 1

2
Ψ − Ψ ==i( ) 0A B Z 1

2
. This condition can be understood in terms of parity. In principle, one can construct from 

these functions odd and even solutions. However, since the even modes of ΨI occur at the same energies as the 
odd modes of ΨII and vice versa, one can obtain the eigenvalues when the symmetrized functions ΨI or ΨII are 
zero at the origin. The functions ΨI and ΨII are related to the earlier introduced functions Ψ1 and Ψ2 by

Ψ = + Ψ + − Ψi i1
2

[(1 ) (1 ) ] (19)I 1 2

and

Ψ = − Ψ + + Ψ .i i1
2

[(1 ) (1 ) ] (20)II 1 2

Using Eqs (19, 20) together with Eqs (9),(10) allows ΨI and ΨII to be expressed explicitly in terms of Heun 
functions.

Eq. (18) is formally the same as Eq. (13) but computationally faster. In Fig. 2 we plot the numerically obtained 
solutions of Eq. (18) for the potential defined by a = 24 and b = 0. The dashed lines represent the boundary at 
which the bound states merge with the continuum which occurs at the energies E = ±Δ and E + a/4 = Δ. For the 
potential of strength a = 24 we find that there are four zero-energy bound modes, occurring at Δ = 0.597, 2.276, 
3.817 and 5.282. Their normalized wavefunctions are shown in Fig. 3.

As mentioned previously, the number of zero-energy modes is equal to the number of supercritical states 
(neglecting the spin and valley degrees of freedom). For the symmetric Pöschl-Teller potential, the eigenvalues 
of these supercritical states can be determined approximately, via simple analytic expressions. Moving to the 
symmetric basis, (ΨI, ΨII)T, allows the pair of coupled first order differential equations, Eq. (3) and Eq. (4) to be 
reduced to a single second order differential equation in ΨII:

− − ∆ Ψ −
− − ∆

Ψ
+

Ψ
= .

 


V E
V E

dV
dx

d
dx

d
dx

[( ) ] 1
( )

0
(21)

2 2
II

II
2

II
2

For supercritical states, E = −Δ, Eq. (21) transforms into the differential equation for the angular prolate sphe-
roidal wave functions93:

η
η

η
η λ η

η
η





 −





 +





 − −

−





 =

d
d

d
d

S c c S c(1 ) ( , ) 1
1

( , ) 0,
(22)

N N N
2

1 1
2 2

2 1

where η = ztanh( ), c = ±V0, Ψ = − h S1 NII
2

1 , and S1N are the spheroidal wave functions. λ1N = a(a − 8Δ)/16, 
where the permissible values of λ1N must be determined to assure that S1N(c, η) are finite at η = ±1. The permissi-
ble λ1N can be obtained via the asymptotic expansion

Figure 2. The energy spectrum of confined states in the symmetric Pöschl-Teller potential, of strength a = 24, 
as a function of Δ. The alternating red and blue lines represent the odd (even) and even (odd) modes of ΨI (ΨII) 
respectively. The black crosses denote the supercritical states. The boundary at which the bound states merge 
with the continuum is denoted by the grey (short-dashed) lines.
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λ = + − + − + − + −c cq q q
c

q O c( ) 1 1
8

( 5)
64

( 11 32) ( ), (23)N1
2 2 2

where N = 1, 2, 3, … and q = 2N − 193. Keeping only the terms of expansion shown in Eq. (23) yields the following 
eigenvalues:

= − − − + − −E N a
a

N1
2

(1 2 )
8

1
4

[3 (1 2 ) ], (24)
2

where N is restricted to ensure that E is negative. The resulting approximate eigenvalues for the symmetric 
Pöschl-Teller potential of strength a = 24 are E = −2.475, −1.555 and −0.734 respectively, and are indicated 
as black crosses in Fig. 2. The approximate eigenvalues deviate increasingly from the numerically exact results, 
E = −2.473, −1.542 and −0.682, with decreasing y. It should be noted that a refinement of the approximate values 
of λ1N can be found in ref. 93.

For the hyperbolic secant potential, = − V V x/cosh( )0 , it was found that there was a minimum potential 
strength of V0 = 1/2, required to observe a zero-energy mode22. According to the Landauer formula, the conduct-
ance along the waveguide when the Fermi level is set to the Dirac point is 4ne2/h, where n is the number of 
zero-energy modes. The existence of a threshold in the potential strength needed for the waveguide to contain a 
zero-energy mode allowed us to suggest that such waveguides could be used as switchable devices. However, later 
numerical calculations utilizing a variable phase method implied that power-decaying potentials always possess 
a bound mode58. This result cast serious doubt in the validity of employing exponentially decaying potentials as a 
suitable model for graphene waveguides, since realistic potential profiles decay a power of distance rather than 
exponentially. Notably, the threshold potential strength at which the first zero-energy mode appears can be 

Figure 3. The normalized zero-energy bound-state wavefunctions of the symmetric Pöschl-Teller potential, 
for strength a = 24. (a), (b), (c) and (d) correspond to the case of Δ = 0.597, 2.276, 3.817 and 5.282, respectively. 
The dashed-red and dashed-blue lines correspond to ΨI, while the solid-black lines correspond to ΨII.
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obtained from the condition of the first bound state coinciding with the first supercritical state, i.e. E = −Δ = 0. 
In this instance, Eq. (21) can be solved exactly:

∫ ∫Ψ =






 +









 

C V X dX C V X dXcos ( ) sin ( ) ,
(25)

x x
I 1

0
2

0

∫ ∫Ψ = −






 +







.

 

C V X dX C V X dXsin ( ) cos ( )
(26)

x x
II 1

0
2

0

For even modes of ΨI, C2 = 0, whereas, for odd modes of ΨI, C1 = 0. In the absence of the potential, when 
E = Δ = 0 the two first order differential equations in ΨI and ΨII decouple, and Eq. (21) reduces to a first order dif-
ferential equation. As E = −Δ → 0 and x → ±∞ (where the potential is zero), Eq. (25) and Eq. (26) are required 
to be linearly dependent94 and the Wronskian of the solutions ΨI and ΨII is zero95. Consequently, the bound 
modes satisfy the condition: |ΨI(±∞)|2 = |ΨII(±∞)|2. Therefore, the threshold potential strength at which the 
first zero-energy mode appears is found by the condition

∫
π

= .
∞

 V x dx( )
4 (27)0

Therefore, for any square-integrable potential, the threshold for the appearance of the first bound state of zero 
energy is only a function of the integrated potential. Notably, this is the same result obtained as relativistic 
Levinson theorem45, 59–62. For the Pöschl-Teller potential, Eq. (27) yields a = π, which agrees with Eq. (18). For 

= − V V x/cosh( )0 , Eq. (27) yields V0 = 1/2 which restores the result of ref. 22. This result implies that 
square-integrable power decaying potentials do indeed have a threshold, in contrast to the numerically predicted 
result of ref. 58. In this respect, exponentially decaying potentials are not that different from power-decaying and 
are perfectly suitable for the modeling of top-gated Weyl semimetals.

Finally, it should be noted that in the non-relativistic limit, Eq. (10) restores the well known results14 for the 
bound state functions of the Schrödinger equation for the Pöschl-Teller potential. In the limit that α and δ are 
much smaller than β and γ (i.e. large Δ):

α β γ δ η γ β γ= + − − + −β

∆→∞

−H Z Z F Q Q Zlim ( ( , , , , , )) ( , 1 ; 1 ; 1 ), (28)2 1

where Q = γ β γ β η δ+ − ± + + − +( )1 1 4( ) /2s s
2 2  and 2F1 is the Gauss hypergeometric function. 

Substituting E = ESE + Δ, b = 0 and sβ = −sγ = 1 into Eq. (10), results in the non-relativistic bound state 
functions

ε ε εΨ ∝ + + − + − −
ε ε

∆→∞
F T T Z Z Zlim ( ) ( 1 , ; 1 ; 1 ) (1 ) , (29)1 12 2 2

where ε = − ∆βs E2 SE  and = − + + ∆T a( 1 1 2 )/2. For the solutions to be finite at Z = 0, we require that 
ε − T = −N where N = 0, 1, 2, …. When this criteria is met, the Gauss hypergeometric function is a polynomial of 
degree N and the energy levels are given by

Figure 4. The energy spectra of confined states in the modified Pöschl-Teller potential, of strength a = 24 and 
b = 2, as a function of Δ for (a) M = 0 and (b) M = 2. The grey (dashed), black (dot-dashed) and green (dotted) 
lines correspond to Δ2 + M2 = E2, Δ2 + M2 = (E − b)2 and Δ2 + M2 = [E + (a − b)2/4a]2, respectively. The blue-
shaded area highlights the energy range in which the modes contained within the waveguide are non-leaky.
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= −
∆

− + + + ∆ .E N a1
8

[ (1 2 ) 1 2 ] (30)SE
2

Modified Pöschl-Teller potential solutions. We shall now consider the case of finite b, which represents a 
smooth asymmetric waveguide. Previously considered asymmetric waveguides varied abruptly on the same scale as 
the graphene lattice constant54, 96–99. We shall now consider more realistic smooth asymmetric waveguides, which fit 
closer to experimentally achievable potential profiles. In Fig. 4, we plot the energy spectrum for the potential defined 
by the parameters a = 24 and b = 2. The introduction of the asymmetry term b reduces the number of modes at 
E = 0, which are now quasi-bound modes for the massless case (Fig. 4a), since they can couple to continuum states 
outside of the waveguide. Naturally, for massive Dirac fermions full confinement is possible across a range of ener-
gies. In Fig. 5, we show a schematic diagram of the dispersion of a gapped Dirac material, subjected to the modified 
Pöschl-Teller potential defined by a = 24 and b = 2. For a particle of mass M = 2, it can be seen that for the energy 
range E = 0 to E = 2 there are no continuum states outside of the well, therefore in that range all bound solutions will 
be non-leaky. The corresponding energy spectrum of confined states is shown in Fig. 4b.

Conclusions
We have analyzed the behavior of quasi-relativistic two-dimensional particles subjected to a modified 
Pöschl-Teller potential. Our results have direct applications to electronic waveguides in 2D Dirac materials. For 
the symmetric Pöschl-Teller potential, explicit forms were obtained for the eigenvalues of supercritical states. 
A universal expression, for any symmetric potential, was obtained for the critical potential strength required to 
observe the first zero-energy state. The well known results for the Pöschl-Teller potential are recovered in the 
non-relativistic limit.
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