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We study analytically the optical properties of a simple model for an electron-hole pair on a ring

subjected to perpendicular magnetic flux and in-plane electric field. We show how to tune this excitonic

system from optically active to optically dark as a function of these external fields. Our results offer a

simple mechanism for exciton storage and readout.
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The manipulation of light and excitons is an area which
has sparked much recent interest [1–5]. The speed of light
has been slowed down to an amazing 17 ms�1 in an ultra-
cold gas of sodium atoms [2] by the use of electromagneti-
cally induced transparency techniques [6]. Bose-Einstein
condensation of an excitonic gas is a phenomenon consid-
ered theoretically a long time ago [7]. However, it is only
recently that the ability to grow high quality layered semi-
conductor structures has allowed for a successful experi-
mental investigation of excitonic superfluids. Spatial
patterns in photoluminescence measurements of an exciton
gas in GaAs=AlGaAs coupled quantum wells have been
observed [8] and are thought to be a signature of quantum
degeneracy [9]. Zero Hall voltages measured in bilayer
quantum-well systems for particular layer separations
and magnitudes of a magnetic field applied perpendicular
to the layers are also understood to indicate the presence of
an excitonic condensate [10]. There has also been experi-
mental evidence for the formation of a polariton Bose-
Einstein condensate [11] and a room temperature polariton
laser [12]. Such discoveries are very important for quantum
computing applications [13]. In current computers, elec-
trons are used for information processing and photons for
communication. Conversion between the two media places
limitations upon the machine’s efficiency. The creation of
an exciton-based integrated circuit [14] could provide an
exciting solution to this problem. The possibility of using
excitons for data storage has also been investigated using
indirect excitons in self-assembled quantum dots [3] and
coupled quantum wells [1]. Here the electron and hole are
separated using a gate voltage, significantly prolonging
their lifetimes.

In this Letter we find a mechanism for controlling ex-
citonic lifetimes in a single Aharonov-Bohm (AB) nano-
ring, again by the use of a constant electric field.
Suppression of ground state exciton emission has already
been seen for polarized excitons in the ring geometry for
particular magnetic field strengths [15]; the introduction of
impurities [16,17] and the use of slightly eccentric rings
[18] makes previously dark states become optically active.

In the present system, recombination of the electron-
hole pair is not prevented by their confinement to different
nanostructures, as previously seen, but by appropriate tun-
ing of external magnetic and electric fields. In Fig. 1, we
show the oscillator strength F of an exciton in a one-
dimensional ring geometry threaded by a perpendicular
magnetic flux� and in the presence of an in-plane electric
field. The oscillator strength oscillates as a function of
magnetic flux. The most striking feature, however, is the
way these oscillations change as the (dimensionless) elec-
tric field u0 is varied. Up to a certain critical value of u0, F
peaks at � ¼ 0:5 (in units of the universal flux quantum
h=e) indicating optimal conditions for the exciton creation
and recombination. However, beyond this critical value, F
reaches zero at� ¼ 0:5 and such transitions are forbidden.
The critical electric field strength uc is comparable to the
electron-hole interaction strength v0 and the transition
occurs between u0 ¼ 0:3 and u0 ¼ 0:4 for the value used
in Fig. 1. This suggests a mechanism for controlling
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FIG. 1. Oscillator strength F as a function of � for electron-
hole interaction strength v0 ¼ �2=�2 and various values of the
electric field u0. The horizontal dashed line indicates F ¼ 0.
Only every sixth data point is shown for clarity in each curve.
Inset: Schematics of the ring geometry and the external fields.
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whether an excitonic state is optically active or not and thus
whether an exciton is present or absent from the ring. The
procedure is (i) begin with� ¼ 0 and u0 ¼ 0, (ii) increase
the flux adiabatically to � ¼ 0:5 so an exciton can easily
be created from the vacuum, (iii) decrease �, (iv) increase
u0 until it appreciably exceeds the critical value, (v) in-
crease flux to � ¼ 0:5. The oscillator strength is now
zero, so the exciton is trapped and unable to decay until
the external fields are further tuned. This has important
implications for excitonic data storage as we shall discuss
later.

We study the excitonic ground state energies, wave
functions, and corresponding oscillator strengths exactly
for the case of a contact electron-hole interaction. We
obtain the excitonic wave function as a linear combination
of the electron and hole single-particle wave functions,

c ðeÞ
N ð�eÞ and c ðhÞ

N0 ð�hÞ,

�ð�e; �hÞ ¼
X

N;N0
ANN0c ðeÞ

N ð�eÞc ðhÞ
N0 ð�hÞ; (1)

depending on the azimuthal coordinates, �e and �h, of the
electron and hole, respectively. Here, the single-particle
electron wave function obeys the dimensionless
Schrödinger equation

H ðu0;�Þc ðeÞð�eÞ ¼ �ðeÞc ðeÞð�eÞ

�
�
� d2

d�2e
þ 2i�

d
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where � ¼ ��Ae=@, u0 ¼ e�U0=�0, �
ðeÞ ¼ Ee=�0, and

�0 ¼ @
2=2me�

2, and � is the ring radius, A the magnetic
vector potential, U0 the constant in-plane electric field, Ee

the energy of the electron, and me the mass of the electron.
The Schrödinger equation is the same for the hole aside
from a change in sign for � and u0. The eigensolutions of
(2), a Mathieu equation with external flux [19], can be
constructed by Fourier expansion of the single-particle
wave functions and obtaining the expansion coefficients
and energies from the resulting matrix eigenequation.

The Hamiltonian for the two particle excitonic system is
given byHðu0;�Þ þ�Hð�u0=�;��Þ þ V½Rð�e � �hÞ�,
where � ¼ me=mh is the ratio of the electron and hole
masses [20] and V is the interaction term, which depends
on the distance R between the electron and hole. We
assume a short range interaction V½Rð�e � �hÞ�=�0 ¼
2�v0�ð�e � �hÞ, where v0 is the average interaction
strength in units of �0. v0 is chosen as multiples of
�1=�2, so that the spatial extent of the exciton is compa-
rable to the ring circumference, ensuring an appreciable
AB effect [21]. The Schrödinger equation may now be
written as

X

N;N0
ANN0 ð�ðeÞ

N þ �ðhÞ
N0 � �Þc ðeÞ

N ð�eÞc ðhÞ
N0 ð�hÞ

þ 2�v0�ð�e � �hÞ�ð�e; �hÞ ¼ 0; (3)

where � is the excitonic energy in units of �0. Multiplying

by ½c ðeÞ
N ð�eÞc ðhÞ

N0 ð�hÞ�y for particular N;N0 2 Z and inte-

grating over �e, �h 2 ½0; 2�� allows us to obtain an ex-
pression for the coefficients in Eq. (1)
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and

GNN0 ¼
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0
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Then Eq. (5) can be expressed as

GN0N
0
0
¼ X

N;N0
GNN0PNN0N0N

0
0
ð�Þ: (8)

No analytic solution of (8) is known for finite v0 and u0
[21]. In order to find approximate solutions to (8), we cut
off the sums at a maximum value Nmax for N, N0, N0, N

0
0.

We have chosen Nmax ¼ 15 for calculation of the excitonic
energies and Nmax ¼ 11 for the oscillator strengths; we
have tested that our results do not change appreciably for
the range of �, u0, and v0 considered here. Mapping
N;N0 ! K and N0; N

0
0 ! K0 according to K ¼

ðN � 1ÞNmax þ N0, allows Eq. (8) to be reformulated as a
standard matrix equation GK0

¼ P
KGKPKK0

ð�Þ. The ex-

citonic energies may now be calculated numerically by
determining the values of � which result in the matrix
PKK0

having an eigenvalue equal to 1. For given �, all

eigenstates can be found using (7), (4), and (1).
Figure 2 shows the resulting excitonic energies plotted

as a function of magnetic flux for different electric field
strengths. For small enough finite electric fields, the exci-
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tonic energy oscillates as a function of the magnetic field as
seen previously for u0 ¼ 0 [21]. This is due to the electron
and hole, which were created simultaneously at the same
position, having a finite probability to tunnel in opposite
directions and meet each other on the opposite side of the
ring. The dependence of the oscillation amplitude upon
electric field strength is shown in Fig. 3 for different values
of the interaction strength. In all cases there is initially a
small increase [22] in amplitude �ð� ¼ 0:5Þ � �ð� ¼
0:0Þ and then it decreases strongly as a function of elec-
tric field strength. This change happens when the polariza-
tion energy 2u0 becomes comparable to the exciton bind-
ing energy, which is �2v2

0=2 on a line. As seen in the inset

of Fig. 3, the polarization energy should be calculated with

an effective electric field, Eeff , where eEeffR=�0 ¼ u0 �
2�v0=5. More precisely, the change of behavior corre-
sponds to a level crossing between ground and first excited
state which only occurs at � ¼ 0:5 as shown in the insets
of Fig. 2 [23]. The level crossing is associated with an exact
symmetry at � ¼ 0:5 upon exchanging �e;h ! ��e;h. The
quadratic behavior for small enough magnetic fluxes and
the negative curvature of � are as expected from second
order perturbation theory in u0 as shown in Fig. 4. For
magnetic flux values close to � ¼ 0:5, the excitonic en-
ergy remains almost constant as a function of electric field
until the critical u0 value, when the level crossing occurs.
The oscillator strength F ¼ jR2�

0 d��ð�; �Þj2=R
2�
0 d�e

R
2�
0 d�hj�ð�e; �hÞj2 was already shown in Fig. 1

as a function of magnetic flux � for various values of
electric field strength. It measures the strength of a tran-
sition from the ground state �ð�e; �hÞ into the vacuum
state. We note that the transition from optically active to
dark coincides with the change in slope of the amplitude of
the excitonic AB oscillation as in Fig. 3 and also the
reinstatement of the parabolic behavior in Fig. 4. In order
to explain the mechanism for this behavior, we show in
Fig. 5 the probability density function for the exciton at
different values of �, u0, and v0. In Fig. 5(a) the magnetic
flux and electric field have been set to zero. The dark gray
diagonal region indicates a peak in probability density
where the electron and hole coordinates are close together,
so the exciton is very small. In Fig. 5(b) the flux has been
increased from its zero value, while keeping the interaction
strength and electric field constant. There is a slight nar-
rowing of the peaked region and the contours are closer
together, showing that the exciton has become smaller. In
Fig. 5(c) the magnetic flux and interaction strength are the
same as in Fig. 5(a), but the electric field has been in-
creased. We see the dark gray region has begun to split in
two, suggesting the exciton is beginning to separate. In
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FIG. 2. Excitonic energy as a function of magnetic flux � at
various values of electric field u0 for interaction strength v0 ¼
�2=�2. Only every fourth data point is shown for clarity in each
curve. Top inset: The energies of the first three states at � ¼
0:45 as a function of u0. Bottom inset: The first three states at
� ¼ 0:5 as a function of u0.
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Fig. 5(d) the magnetic flux has been increased from its zero
value in Fig. 5(c). The result is two dark gray peaks
indicating that the exciton has been broken [3] into an
electron and hole, which are located on opposite sides of
the ring.

In conclusion, we have presented a simple model which
allows the tuning of an exciton from light to dark by the
application of external fields similar to previous experi-
ments in quantum dots [3]. Rings of InAs drops with radius
&50 nm on GaAs surfaces have been fabricated [24]. The
important feature is that the overall sensitivity can be
optimized with the external magnetic field, while the con-
trol can be achieved with simple local electric gates.
Moderate magnetic fields of a few Tesla as well as an
electric field of�100 V=cmwould be sufficient to observe
the proposed effects for such a ring at moderately low
temperatures of the order of 10 K. This suggests that our
model might be useful in the quest to trap and store light
[1–3,14]. Also, the contrast Fðu0 ¼ 0Þ=Fðu0 � 0Þ at � ¼
0:5 remains much more pronounced in larger rings than
that of the ground state energy AB oscillations. Hence we
expect that the effect is visible in somewhat larger rings
and in the presence of weak impurities.
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