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Tuning terahertz transitions in a double-gated quantum ring
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We theoretically investigate the optical functionality of a semiconducting quantum ring manipulated by
two electrostatic lateral gates used to induce a double quantum well along the ring. The well parameters and
corresponding interlevel spacings, which lie in the THz range, are highly sensitive to the gate voltages. Our
analysis shows that selection rules for interlevel dipole transitions, caused by linearly polarized excitations,
depend on the polarization vector angle with respect to the gates. In striking difference from the conventional
symmetric double well potential, the ring geometry permits polarization-dependent transitions between the
ground and second excited states, allowing the use of this structure in a three-level lasing scheme.
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I. INTRODUCTION

The THz regime is a narrow region of the electromagnetic
spectrum for which practical technologies lack the ability
to produce or detect coherent radiation. Aptly named the
THz gap, bridging it constitutes one of the most formidable
problems of modern applied physics. THz devices hold great
potential in applications across diverse fields of science—
examples include noninvasive biomedical imaging, submil-
limeter astronomy, and stand-off detection of plastic explosives
[1–3]. As such, interest in proposing efficient and portable THz
devices has rapidly grown over the past couple of decades.

The literature provides a variety of proposals for prac-
tical THz devices. Amongst the most heavily researched
aspirants are semiconductor nanostructures hosting multiple
quantum wells, such as double quantum wells [4,5], and
quantum cascade lasers [6–8]. The above mentioned double
quantum well (DQW) structures are realized in heterostruc-
tures of alternating semiconductor layers with different band
gaps. The shapes of these double well potentials are therefore
intrinsic to the specific heterostructure and, while robust,
offer limited ability to manipulate the shapes of the potentials
without the use of large external fields. Promising candidates
also exist in the form of nonsimply connected nanostructures,
such as carbon nanotubes [9–12], double-layer graphene [13],
or quantum rings [14–16]. The appeal in using these latter
structures for THz devices, in lieu of those former, lies in their
greater tunability with external fields.

A quantum ring (QR) represents the simplest example avail-
able for study of such a nonsimply connected system. These
novel nanostructures have already been shown to exhibit a
range of fascinating phenomena, predominantly resulting from
the Aharonov-Bohm effect [14–34]. Exploiting Aharonov-
Bohm-related properties requires trapping magnetic flux in
the ring annulus, with flux equal to an odd number of one-half
of the flux quantum enhancing the corresponding effects. A
drawback of utilizing the Aharonov-Bohm effect in such rings
for THz applications is therefore the amount of magnetic flux
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required. A quantum ring with a typical energy scale within
the THz regime requires a radius on the order of 10 nm. While
constructing a nanostructure with these dimensions is certainly
experimentally feasible [17,23], to achieve the necessary flux
piercing the ring would require a magnetic field B ≈ 10T,
limiting our ability to propose compact and portable QR-based
THz devices. The aforementioned proposals [14–16] were
based on lifting the degeneracy between QR energy levels
occurring at half-integer flux quanta by means of an external
electric field. Here we propose an alternative setup with tunable
energy levels without resorting to excessively large magnetic
fields.

In this paper we analyze a quantum ring system with two
electrostatic lateral gates and exploit its double-connectedness
in the absence of magnetic fields. In what follows we
theoretically investigate the influence of these lateral gates and
show that this system is analogous to a DQW. Consequently,
the control of energy separations can be achieved via tuning
the double well parameters with experimentally attainable
gate voltages. We highlight a significant difference between
this double-gated ring system and the conventional DQW,
namely that intraband optical transitions between the ground
and second excited states are dependent on the polarization
angles of incident linearly polarized light.

II. THEORETICAL MODEL

We consider the system of a semiconductor QR hosting a
single electron between two in-plane gates. We have consid-
ered two models for theses gates—point charges and infinitely
long charged wires—with both yielding qualitatively similar
conclusions. In this paper we present results for the gates in the
form of the latter because this setup can accommodate linear
arrays of QRs between the gates. The geometry of the system
is shown in Fig. 1. We treat the QR as infinitely narrow, which
is a reasonable approximation for a ring with mean radius
considerably larger than its width and height [28]. We assume
the QR to be composed of a sufficiently large number of atomic
sites, allowing us to express the Hamiltonian of an electron on
a ring within the effective mass approximation,

H = − ∂2

∂ϕ2
+ V (ϕ), (1)
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FIG. 1. A diagram of the system’s geometry and parameters. R

is the ring radius, d1 and d2 are the distances of the charged wires
from the ring center, with charge densities λ1 and λ2 respectively.
The angular position along the ring is given by ϕ, measured from the
horizontal axis as shown. The dotted green line is the projection of
the linearly polarized radiation onto the plane of the ring, where θ is
the angle between this projection and the horizontal axis.

where V (ϕ) is the external potential. The angular position
along the ring ϕ is taken from the horizontal axis as shown
in Fig. 1. The electrostatic potential along the ring due to an
individual charged wire is

�i(ϕ) = −λik ln

[
di + (−1)iR cos(ϕ)

di

]
, (2)

where i = 1,2 labels the wires, λi is the magnitude of the
linear charge density on a wire, di is its corresponding
distance from the center of the ring, and k = 1/2πε with ε

the absolute permittivity. We have defined zero potential to
be along the parallel line passing through the center of the
ring, V (π

2 ) = 0, as shown. The dimensionless potential felt by
an electron of charge −e due to the presence of negatively
charged wires is given by V (ϕ) = e(�1 + �2)/ε1(0), where
ε1(0) = h̄2/2μR2 is the energy scale for a ring with radius R

and electron effective mass μ. The ε1(0) notation is similar
to that introduced in Ref. [14]. For a typical semiconducting
ring with R = 20 nm and μ = 0.05me this gives an energy
scale ε1(0) � 2 meV which corresponds to 0.5 THz. Under
an appropriate expansion whereby the radius is much smaller
than the distances from the ring center to the gates, R/di � 1,
the potential may be expressed as

V (ϕ) = 2β
d

R
(1 − γ ) cos(ϕ) + βγ cos(2ϕ), (3)

where β = λkeR2/2d2ε1(0) characterizes the strength of the
potential. We have defined the asymmetry term γ as the ratio
of the distances divided by the ratio of the charge densities
γ = d1λ2/d2λ1 and dropped the subscripts for convenience:
λ1 ≡ λ and d1 ≡ d. It should be noted that the inevitable
asymmetry caused by the difficulty in maintaining d1 = d2

can be compensated by manipulating λ1 and λ2. The first term
in Eq. (3) is dominant unless |1 − γ | ∼ R/d, otherwise the

potential effectively reduces to the case of a ring under the
influence of a lateral electric field [14–16,20,33].

The 2π -periodic wave functions of the Hamiltonian in zero
potential are given by �m(ϕ) = exp(imϕ)/

√
2π , where m is

the angular momentum quantum number. Upon introduction
of the potential (3) the axial symmetry is broken and electron
states with different angular momentum are mixed, conse-
quently m is defunct as a quantum number. Ergo, we seek solu-
tions to Eq. (1) as a linear combination of these basis functions:

�n(ϕ) =
m=+∞∑
m=−∞

c(n)
m eimϕ, (4)

which maintains the required 2π periodicity in ϕ, and n labels
the nth eigenstate. We can make use of the orthogonality of
exponential functions by multiplying the resulting expression
by eim′ϕ/2π and integrating with respect to ϕ, where m′ is
some integer. The corresponding infinite set of simultaneous
equations for the coefficients c(n)

m reads as

(m2 − an)c(n)
m + β

d

R
(1 − γ )

(
c

(n)
m−1 + c

(n)
m+1

)

+βγ

2

(
c

(n)
m−2 + c

(n)
m+2

) = 0, (5)

and represents an infinite penta-diagonal matrix. Here
an = εn/ε1(0) is the dimensionless nth eigenenergy. We see
from Eq. (5) that when γ = 1 only the states with m = ±2
are mixed, whereas the uniaxial direction established by γ 
= 1
also mixes states with m = ±1. Truncating and numerically
diagonalizing the matrix (5) yields the eigenenergies and
their corresponding coefficients c(n)

m , from which the wave
functions are given via Eq. (4). For the remainder of this paper
we apply a truncation at |m| = 13, any increase in matrix size
yields no noticeable change in the lowest eigenenergies.

III. TUNEABLE DOUBLE QUANTUM WELL

The formation of a double quantum well (DQW) has only
been discussed in QRs subject to exceedingly large in-plane
magnetic fields [25]; however, here we show that DQW
solutions occur for a QR subject to the double gate potential
(3) with easily attainable voltages. Figure 2 illustrates the
lowest three levels, with the corresponding wave functions
superposed on top, for β = 2 and d/R = 100 [Fig. 2(a) is
γ = 1 and Fig. 2(b) is γ = 1.003]. The potentials and energy
levels have all been shifted by a constant so that the well
minima are at zero. The potential strength β and asymmetry
parameter γ permit control over the form of the DQW, thereby
allowing control of the energy levels solely via the voltages
applied to the gates (assuming the spatial parameters are kept
fixed). Indeed, the positions of the well minima, ±ϕ0, are
governed by γ such that ϕ0 = Arccos[ d

2R
(γ − 1)/γ ]. The well

maxima occur at ϕ = 0, ± π and are given via Eq. (3). As the
potential strength β increases, successive energy states pair up
and asymptotically approach a doubly degenerate state, with
the interlevel splitting decreasing for higher γ . This is reflected
in the upper two panels of Fig. 3, which shows the lowest lying
energy levels as a function of β for several values of γ . When
γ = 1.009, the DQW solutions form, albeit at a higher value
of β in comparison with when γ = 1. Hence, the asymmetry

235430-2



TUNING TERAHERTZ TRANSITIONS IN A DOUBLE- . . . PHYSICAL REVIEW B 96, 235430 (2017)

FIG. 2. Potential and lowest three energy levels with the corresponding wave functions sketched on top for β = 2 and d/R = 100: (a) is
for γ = 1 and (b) is for γ = 1.003. The potentials and energy levels have been shifted by a constant to bring the well minima to zero.

parameter γ acts to reduce the sensitivity of the system. The
bottom panel of Fig. 3 depicts the dispersion for γ = 1.2 and
resembles that of a QR in a lateral electric field [14] wherein
DQW solutions are not formed. Thus, we demonstrate that the
lateral field setting can be treated on the same footing as a
double-quantum-well-on-a-ring problem.

For small potential strengths, (β � 1) and reasonable
asymmetry parameters (|1 − γ | ∼ R/d) we can express the
energy separation between the ground state and the first excited
state, up to second order in β, via Rayleigh-Schrödinger
perturbation theory as

ε01 = ε1(0)

(
1 − βγ

2
+ 3β2γ 2

32
+ 5d2

3R2
β2(1 − γ )2

)
. (6)

As we increase β, higher order terms dominate and we resort
to a nonperturbative approach. In the limit of high β, the lowest
two states are well described by odd and even combinations of
harmonic oscillator ground states localized in the individual
wells. Tunneling between these degenerate states through the
two potential barriers around the ring results in an energy split-
ting. To describe this tunneling-dependent splitting we use the
Wentzel-Kramers-Brillouin (WKB) approximation, adapted to
a DQW on a ring, with the appropriate prefactor attributed
to the ground state splitting [35,36]. Alternative tunneling-
dependent methods would be also appropriate [35,37]. The
separation between the ground and the first excited state,
adapted to angular coordinates, is given as

ε
(WKB)
01 = h̄ω√

eπ
(e−�(ϕc) + e−�(ϕ′

c)), (7)

where ω is the oscillator frequency of an individual well. The
classical turning points ϕc and ϕ′

c are the positive solutions of
V (ϕ) = E, where E is the harmonic oscillator ground state
energy in an individual well. The two terms on the right-hand
side of Eq. (7) represent separate contributions from tunneling
through the barriers centered on ϕ = 0 and ϕ = π , hence the
exponents are given via

�(ϕc) =
∫ ϕc

−ϕc

p(ϕ) dϕ, �(ϕ′
c) =

∫ 2π−ϕ′
c

ϕ′
c

p(ϕ) dϕ, (8)

where p(ϕ) = √
V (ϕ) − E. Results for the energy separation

between the ground state and first excited state as a function

of β are plotted in Fig. 4 for several values of γ . Results from
Eqs. (6) and (7) are also plotted as dotted lines for γ = 1,
1.003, and 1.006. When γ = 1, the approximate perturbation
theory result agrees well with the exact calculations for
potential strengths as high as β � 1. The WKB result
then agrees from β � 6. As γ increases, we see that the
approximate perturbation theory expressions agree only for
lower β; likewise the WKB results agree for higher β. This is
because the cos(ϕ) term in the potential (3) acts to repulse the
first excited state from the ground state, as can be seen from
the last term in Eq. (6). Indeed, for large enough values of
γ , after an initial decrease, the separation then increases with
increasing β before finally decreasing once more (as can be
seen by γ = 1.009 in Fig. 4). When only the ground state is
confined, there is an initial decrease in energy separation with
respect to β. Then, upon confining the first excited state by the
larger potential barriers, the cos(ϕ) term acts as a repulsion
between the bottom two energy levels. With increasing β,
both states drop deeper into the potential and are confined
by the smaller potential barrier. Correspondingly, ε0,1

decreases as the states approach an asymptotically degenerate
state.

IV. DIPOLE TRANSITION SELECTION RULES

Here we study the radiative intraband transitions in our
double-gated QR. Let us consider linearly polarized radiation
incident onto the QR, with η representing the projection
of the polarization vector onto the plane of the ring, and
restrict ourselves solely to dipole optical transitions. The
transition dipole matrix element Pif (θ ) = 〈f |ηP̂|i〉 dictates
the transition rate between initial (i) and final (f ) single-
electron states �if ∝ |Pif (θ )|2, where we have defined the
dipole moment operator as P̂. For our model of an infinitely
narrow ring, this matrix element takes the form [14]

Pif (θ ) = eR

∫
�∗

f �i cos(θ − ϕ)dϕ, (9)

where e is the elementary charge and θ is the angle between
the projection of linearly polarized radiation onto the plane of
the QR and the horizontal axis, as shown in Fig. 1.

As the potential induced by the side gates is symmetric
about ϕ = 0, the wave functions given by Eq. (4) must be

235430-3



T. P. COLLIER, V. A. SAROKA, AND M. E. PORTNOI PHYSICAL REVIEW B 96, 235430 (2017)

FIG. 3. Lowest lying eigenenergies plotted as a function of β for
reasonable values of asymmetry parameter: (a) is for γ = 1, (b) is for
γ = 1.009, and a large value (c) is for γ = 1.2.

either odd or even about ϕ = 0, and it is convenient to
separate them by parity. We begin by considering the system
with γ = 1, corresponding to mixing states with angular
momentum quantum numbers differing by m = ±2, as can
be seen from Eq. (5). The additional symmetry about ϕ = π/2
permits both π -periodic and 2π -periodic solutions, which
allows us to express the lowest four electronic states as

�0(ϕ) = 1√
π

∑
j=0

A
(0)
2j cos(2jϕ), (10a)

�1(ϕ) = 1√
π

∑
j=0

B
(1)
2j+1 sin[(2j + 1)ϕ], (10b)

FIG. 4. Energy separation between ground state and first excited
state as a function of β. The solid curve is for γ = 1, subsequently
the dot-dashed curve is for γ = 1.003, the small-dashed curve is for
γ = 1.006, and γ = 1.009 is the large-dashed curve. Dotted lines
represent approximate results obtained by perturbation theory and
the WKB method, not visible for γ = 1.009 within the plotted range
and scale of β.

�2(ϕ) = 1√
π

∑
j=0

A
(2)
2j+1 cos[(2j + 1)ϕ], (10c)

�3(ϕ) = 1√
π

∑
j=0

B
(3)
2j+2 sin[(2j + 2)ϕ], (10d)

where we have included the 1/
√

π prefactors for later conve-
nience. Incidentally, as the stationary Schrödinger equation
is the Mathieu equation [38], these are periodic Mathieu
functions [39] (although we have omitted the conventional
1/

√
2 prefactor for the ground state coefficients). These fourier

coefficients can be found numerically via diagonalization of
Eq. (5) or found via approximate methods for small β [39].
Substituting Eqs. (10a), (10b), and (10c) into Eq. (9) as the
respective electron wave functions �i and �f , we find for
transitions between the three lowest states

P01(θ ) = eR sin(θ )
∑
j,k=0

B
(1)
2j+1A

(0)
2k

2 − δk,0
(δj,k − δj,k−1), (11a)

P02(θ ) = eR cos(θ )
∑
j,k=0

A
(2)
2j+1A

(0)
2k

2 − δk,0
(δj,k + δj,k−1), (11b)

P12(θ ) = 0. (11c)

Remarkably, optical transitions are allowed between the
ground state and both the first and second excited states, while
the transition between these excited states is forbidden for
γ = 1. This represents a clear difference from typical DQW
heterostructures, where optical transitions are only allowed
between states of opposite parity, such as between the second
and first excited states, and transitions between states of the
same parity are typically forbidden. Here, however, due to the
ring geometry, dipole transitions between the ground state and
the second excited state are allowed, with �02 reaching its
maximum value when induced by radiation polarized parallel
to horizontal axis θ = 0. This is also different from what is
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FIG. 5. Square of dimensionless transition dipole matrix element
between initial (i) and final (f ) single-electron states plotted as
a function of β for different values of γ . The upper branch is
|P01|2/(eR)2 at θ = π/2 and the lower branch is |P02|2/(eR)2 at
θ = 0. The full lines denote the results for γ = 1, dashed lines are
for γ = 1.003, and dot-dashed lines are for γ = 1.006. The inset is a
schematic showing the optical selection rules between the eight lowest
energy eigenstates. The full blue arrows are the allowed transitions
for when γ = 1, the red dot-dashed arrows are forbidden transitions
which become allowed when γ 
= 1.

expected from the periodic and hard wall boundary conditions
in carbon nanotubes and graphene nanoribbons [40]. We can
understand this new feature by considering the unperturbed
QR system, which has a zero ground state energy with
constant wave function and a doubly degenerate first excited
state (reflecting rotational symmetry about the ring). Optical
selection rules allow transitions from the ground state to both of
these adjacent states. Any breaking of axial symmetry reveals
the zeroth-order wave functions for these double degenerate
states to be cos(ϕ) and sin(ϕ). Thus, perturbing the QR with
the double well potential we see that the state corresponding
to sin(ϕ), with its nodes centered on the potential barriers,
is less influenced by the perturbation and remains as the first
excited state, whereas the state corresponding to cos(ϕ), having
extrema at the barriers, is repulsed by the potential barriers
and becomes the second excited state. This is evident by the
first terms of the series from Eqs. (10b) and (10c). Allowed
optical transitions therefore persist between the ground state
and the next two excited states for the double-gated QR, with
the polarization angle-dependent selection rules manifesting
from the ring geometry and the defined parity from the
perturbation.

Figure 5 plots the dimensionless transition dipole matrix
elements |P01|2/(eR)2 at polarization angle θ = π/2 and
|P02|2/(eR)2 at θ = 0, for different values of γ . The inset
shows a schematic of the optical selection rules, with blue
arrows representing allowed transitions for γ = 1 and red dot-
dashed arrows showing forbidden transitions, which become
allowed when γ 
= 1. Asymmetry introduces the cos(ϕ) term
in the potential (3) and removes the symmetry about ϕ = π/2,
therefore coupling states with m = ±1. Formal solutions

FIG. 6. Square of dimensionless transition dipole matrix element
between first and second excited states, for the asymmetric system
and θ = π/2, plotted as a function of β. The solid line is γ = 1.007,
dashed line is γ = 1.005, dot-dashed is γ = 1.003, and dotted is
γ = 1.001.

can then be written as

�n(ϕ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
π

∑
j=0

A
(n)
j cos(jϕ), n even or 0,

1√
π

∑
j=0

B
(n)
j+1 sin[(j + 1)ϕ], n odd.

(12)
The matrix elements P01(θ ) and P02(θ ) maintain the same de-
pendence on the polarization angle θ ; however, they decrease
in magnitude with increasing asymmetry, as can be seen in
Fig. 5. Optical transitions between the first and second states
become allowed, with the corresponding matrix element given
as

P12(θ ) = eR sin(θ )
∑
j,k=0

A
(2)
j B

(1)
k+1

2 − δj,0
(δj,k − δj,k+2). (13)

In the same way, all other optical transitions forbidden when
γ = 1 can be shown to become allowed when γ 
= 1, as is
depicted schematically by the inset of Fig. 5. In Fig. 6 we plot
the matrix element |P12|2/(eR)2 at θ = π/2 as a function of β

for several values of γ .
Switching the sign of the gate voltages (β < 0) for γ = 1

is equivalent to the coordinate shift V (ϕ) → V (ϕ + π/2) (up
to an arbitrary constant), and the parities of the excited states
about ϕ = 0 and ϕ = π/2 are exchanged. Accordingly, while
the matrix elements yield the same magnitudes, the polariza-
tion angle dependence is rotated by π/2, i.e., P01(θ ) ∝ cos(θ )
and P02(θ ) ∝ sin(θ ). This dependence on θ is maintained for
γ 
= 1; however, the highly tunable energy separation occurs
between the first and second excited states, due to the resonant
levels of the asymmetric DQW formed.

Controlling the polarization angle of incident radiation, one
can selectively excite transitions from the ground state to either
of the next two excited states. Introducing asymmetry allows
transitions between these two states. This opens the possibility
for a double-gated QR to be viewed as a three-level system
suitable for lasing between the first excited state and the ground
state, driven by excitation from the ground state to the second
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excited state at a much higher frequency. This system offers
control over the frequency of the lasing transition, which is
typically in the THz range, via tuning the voltage on the gates.

V. CONCLUSION

In summary, we show that the system of a quantum ring
between two gates is a tunable double quantum well. The
energy separation between the ground state and first excited
state for an electron in such a system can be tuned via the
voltage on the gates. The problem is treated numerically via
finite matrix diagonalization, which provides a good agree-
ment with the perturbation theory and WKB method results in
the limiting cases. Contrary to typical DQW heterostructures,
dipole transitions in a double-gated QR induced by light
polarized in the plane of the ring depend strongly on the
polarization angle with respect to the gates. Consequently,
we show that transitions between the ground state and the
second excited state are allowed, with the maximum rate of
transitions for negatively (positively) charged gates occurring
due to radiation polarized parallel (perpendicular) to the

axis of the gates. Furthermore, the transition between the
second and first excited states is forbidden in the particular
case of a π -periodic potential, in contrast to planar DQW
structures wherein this transition is always allowed. Due to the
polarization angle-dependent selection rules, a double-gated
QR may act as a three-level system capable of lasing between
the highly tunable transition from first excited to ground state,
with the differently polarized pump transition from the ground
to second excited state occurring at higher frequency.
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