
PHYSICAL REVIEW B 94, 165407 (2016)

Massless Dirac fermions in two dimensions: Confinement in nonuniform magnetic fields
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We show how it is possible to trap two-dimensional massless Dirac fermions in spatially inhomogeneous
magnetic fields, as long as the formed magnetic quantum dot (or ring) is of a slowly decaying nature. It is found
that a modulation of the depth of the magnetic quantum dot leads to successive confinement-deconfinement
transitions of vortexlike states with a certain angular momentum, until a regime is reached where only states with
one sign of angular momentum are supported. We illustrate these characteristics with both exact solutions and a
hitherto unknown quasi-exactly solvable model utilizing confluent Heun functions.
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I. INTRODUCTION

Inhomogeneous magnetic fields continue to play an impor-
tant role in modern physics, from the historic Stern-Gerlach
experiment [1] of 1922 to the post-World War II achievements
in magnetic confinement of plasmas in tokamaks [2] and the
more recent magnetic levitation of macroscopic objects [3].

With the rise of the two-dimensional (2D) Dirac materials
such as graphene, whose electrons behave like massless
Dirac fermions, the influence of magnetic fields has been
pivotal to research into a range of fundamental physics [4],
including relativistic Landau levels [5–7], Fock-Darwin states
[8], integer [9] and fractional [10] quantum Hall effects,
Hofstadter butterflies [11], and quantum spin Hall states [12].

An important feature of Dirac fermions is the complete
absence of backscattering [13], leading to a great difficulty in
confining electrons electrostatically [14,15]. Therefore, much
effort has been expounded on considerations of magnetic
traps [16–18]. One-dimensional magnetic confinement has
been shown to be key for snake states [19–21] and many
inhomogeneous field profiles have been treated [22–28]. Zero-
dimensional confinement in perpendicular magnetic fields
has also been treated extensively [29–36], with magnetic
antidots [29] and antirings [31,34] (where the magnetic field
is zero inside the dots and rings, respectively) being shown
to confine electrons. However, magnetic quantum dots (where
the magnetic field is nonzero inside the dot) has been shown
for a square-well magnetic field [30] to not support bound
states. In fact, as long as the magnetic trap decays at infinity
slowly, bound states are indeed possible in both magnetic dots
and rings, as we show in this work.

Here we discuss several examples of magnetic profiles
which show confinement in magnetic quantum dots and rings is
achievable. Notably, we study smooth magnetic fields, which
are both spatially inhomogeneous and regular at the origin,
rather than the well-known square-well models. In doing so,
we make use of both exact solutions and a quasi-exactly
solvable [37,38] (QES) model, which most clearly display the
underlying physics. Furthermore, studies of inhomogeneous
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electric fields [39,40] have already been shown to be important
in Dirac materials as compared to electrostatic square-well
models. We find here that a characteristic of magnetic quantum
dots with decreasing field strength is the removal one-by-one
of quantum states with diminishing angular momentum, until
a plateau is reached where only bound states with negative
angular momentum exist.

Experimentally, nonuniform magnetic fields [41] can be
created by various means, including deposition of ferromag-
netic microstructures [42] or superconducting stripes on top
of the 2D electron gas [43], or by curving the membrane [44].
Indeed, a recent experiment [45] has successfully studied weak
localization in graphene in inhomogeneous magnetic fields
(created by a thin film of type-II superconducting niobium in
close proximity to the graphene layer). To obtain circularly
symmetric magnetic fields like those considered in this work,
one can utilize the field generated from a circular loop of
current, when the loop has a large radius compared to the
electronic sample so that the field is necessarily of a slowly
decaying nature.

The single-particle Hamiltonian describing the 2D excita-
tions in graphene and other such Dirac-Weyl materials in a
magnetic field, B = ∇ × A, can be written

Ĥ = vFσ · ( p̂ + eA), (1)

where vF is the Fermi velocity; σ = (σx,σy), which are Pauli’s
spin matrices; and A is a magnetic vector potential. Acting with
this Hamiltonian on a wave function of the form

�(r,θ ) = eimθ

√
2π

(
χA(r)

ieiθχB(r)

)
, m = 0,±1,±2, . . . , (2)

leads to the following coupled equations:(
∂r + m + 1

r
+ e

�
Aθ

)
χB = εχA, (3a)

(
−∂r + m

r
+ e

�
Aθ

)
χA = εχB, (3b)

where the eigenvalue E = �vF ε and the perpendicular mag-
netic field Bz = r−1∂r [rAθ (r)] enters via the angular com-
ponent of the vector potential. The wave function (2) is an
eigenfunction of the total angular momentum operator Jz =
−i�∂θ + �σz/2, such that Jz� = (m + 1/2)�. The compact
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FIG. 1. Plots of the magnetic traps considered: the regularized
magnetic quantum dot (solid red line) and the smooth magnetic
quantum dot (dashed blue line).

Eqs. (3) form the basis of this work. In Sec. II we treat a
slowly decaying, regularized magnetic quantum dot and go on
to consider a spatially smooth magnetic quantum dot profile in
Sec. III; please see Fig. 1 for sketches of these magnetic traps.
We draw some conclusions in Sec. IV and detail corresponding
results for magnetic quantum rings in the Appendix.

II. DIRAC ELECTRON IN A REGULARIZED
MAGNETIC QUANTUM DOT

Let us consider a magnetic quantum dot, defined by

Bz(r) = �

e

1

b

{
R−1, r � R (region I),
r−1, r > R (region II),

(4)

where we have introduced the length scale R to regularize the
field as r → 0. This magnetic field profile is sketched in Fig. 1
as the solid red line. R is in immediate competition with b,
the parameter which effectively describes the magnitude of
the field, via the key ratio R/b. The solutions of Eqs. (3) in
region I are the well-known relativistic Landau level wave
functions [7], which can be given in terms of Kummer’s
function F (a,b,z) as

χI
B = cI

b
× (r/b)|m+1|e− r2

4bR F

(
aI ,bI ,

r2

2bR

)
,

(5)

aI = 1

2
(1 + m + |1 + m| − ε2bR), bI = 1 + |1 + m|,

with the normalization constant cI . The upper wave-function
component χA can be easily found from Eq. (3a). The wave
functions in region II can be found by reducing the system
of Eqs. (3) to a single Schrödinger equation for the wave-
function component χB only. In this case one finds a formal
identification with the 2D hydrogen atom [46], leading to

χII
B = cII

b
× (r/b)|m+1|e− κr

b U

(
aII ,bII ,

2κr

b

)
,

(6)

aII = 1

2
+ |1 + m| + 2m + 1

2κ
, bII = 1 + 2|1 + m|,

except here we choose instead the second linearly independent
solution to Kummer’s equation U (a,b,z) [47], in order to have
a square-integrable wave function at infinity. In Eq. (6) we have
introduced κ = √

1 − ε2b2 > 0 and cII is some constant.

Enforcing both wave-function components to be continuous
across the interface at r = R, one obtains the matching
constant

cII

cI

= e
R
b

(κ− 1
4 ) F

(
aI ,bI ,

R
2b

)
U

(
aII ,bII ,

2κR
b

) , (7)

and the following rich transcendental equation for energy
quantization, to be solved by root-finding methods

aI

bI

F
(
aI + 1,bI + 1, R

2b

)
F

(
aI ,bI ,

R
2b

) + 2κaII

U
(
aII + 1,bII + 1, 2κR

b

)
U

(
aII ,bII ,

2κR
b

)
+ κ − 1 = 0, (8)

subject to the bound |εb| < 1. Equation (8) interpolates
between two simple expressions in the limiting cases of (i)
a constant field, when R/b � 1, and (ii) a singular field, in the
regime R/b � 1:

εn,m(bR)1/2 = ±(1 + m + |1 + m| + 2n)1/2,
R

b
� 1, (9a)

εn,mb = ±
{

1 −
(

1 + 2m

1 + 2n + 2|m + 1|
)2

} 1
2

,

m � −1,
R

b
� 1, (9b)

where n = 0,1,2, . . . is a quantum number. Equation (9a),
in the constant magnetic field limit, describes the celebrated
relativistic Landau levels, with the ± entering due to the
presence of both electron and hole excitations in the system.
These Landau levels are highly degenerate, as can be seen
from the contributions of both quantum numbers n and m,
respectively. Equivalently, the spectrum Eq. (9a) may be
rewritten in a form familiar from calculations in the Landau
gauge, εl(bR)1/2 = ±(2l)1/2, where l is a non-negative integer.
These bound states are associated with a localization length, ζ ,
the lower bound of which can be estimated from the exponent
in Eq. (5) to be ζ ∼ 2

√
bR.

In the opposite limit, Eq. (9b) demonstrates that the
spectrum is still dependent on both quantum numbers n and m.
There are highly nodal states near the maximal energy bounds
εn�1,mb � ±1, and a reservoir of high-|m| states near the Dirac
point energy εn,m�−1b � 0, as well as many states in between.
These bound states are characterized by the localization length
ζ which is strongly dependent on the position of the energy
level, and its lower bound may be estimated from the exponent
in Eq. (6) such that ζ ∼ b/κ . While low-lying (and indeed zero
energy) states have ζ ∼ b, high-lying states with |εb| → 1 are
distinguishable by their large localization length ζ → ∞.

The energy levels of both of the limiting cases [Eq. (9)]
are plotted in Fig. 2, where the thick, dashed green lines,
ε = ±1/b, define the boundaries between which bound states
may form. The regime of R/b � 1 is sketched in Fig. 2(a),
where the solid, orange lines represent the plethora of energy
levels which comprise the fan diagram. In Fig. 2(b), the
situation of R/b � 1 is sketched, where the dash-dot orange
lines depict the highly degenerate Landau-like energy levels,
which may be ascribed the quantum number l. Notably, in
this regime and with increasing R/b, at critical values of
the magnetic field parameter (R/b)c = 2l higher Landau-like
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FIG. 2. Sketch of the energy levels εR as a function of the field
parameter R/b, where the thick, dashed green lines, εR = ±R/b,
demarcate the region where bound states may form. In panel (a),
R/b � 1 and the energy levels of Eq. (9a) (solid, thin orange
lines) shown are limited to those with n = (0, . . . ,10) and m =
(−1, . . . ,−10) for clarity. In panel (b), R/b � 1 and the highly
degenerate energy levels of Eq. (9b) (dash-dot, thin orange lines) are
assigned the number l, which encompasses a plethora of combinations
of the quantum numbers n and m.

levels are sequentially established. This is because the energy
levels become residents of the sector of allowable bound state
energies −1/b < ε < 1/b.

Now, upon decreasing R/b one makes a transition from
the (R/b � 1) limit of Eq. (9a) to the (R/b � 1) regime
governed by Eq. (9b), where the positive sign of angular
momentum is now excluded. This suggests that a modulation
of the magnetic field strength will allow one to observe
successive confinement-deconfinement transitions of positive
angular momentum states as they disappear into the continuum

one-by-one with changing magnetic field strength. Such a
phenomena of bound states diving into the continuum has
the superficial appearance of being a magnetic version of the
famous atomic collapse [48,49]. There the relativistic atom
is modeled with a massive Dirac Hamiltonian in an external
Coulomb field, and bound states merge from the gapped region
into the continuum at critical charge strengths.

Striking in Fig. 2 is the presence of pure zero-energy states
(ε = 0). Zero-energy state solutions of various Dirac equations
are of great interest due to their importance for fractional
charge, the quantum Hall effect, topology, localization, and
Majorana physics [50,51]. Here zero modes arise from the de-
coupled first-order Eqs. (3) that are readily integrated to yield(

χA

χB

)
=

(
cArmeA(r)

cBr−(m+1)e−A(r)

)
, A(r) = e

�

∫ r

Aθ (r ′)dr ′,

(10)

where cA,B are integration constants. It follows for the specific
magnetic field consider here, Eq. (4), that

(
χI

B

χII
B

)
∼ r−(m+1)

⎛
⎝e

− r2

4bR

e
3R
4b

− r
b

⎞
⎠, χI

A = χII
A = 0, m � −1.

(11)

Thus these degenerate ground states are chiral: the wave
function is nonzero only on one sublattice site (χB), and they
are equally shared between electrons and holes. Notably, the
restriction on the sign of angular momentum is maintained.
In graphene, the analogous result for the second valley is
obtained by interchanging the upper and lower wave-function
components.

III. DIRAC ELECTRON IN A SMOOTH MAGNETIC WELL

It is expedient to check that the physics found in the above
model is maintained for a smoothly regularized magnetic
quantum dot, shown in Fig. 1 as the dashed, blue line. Thus
we are led to consider the field

Bz(r) = �

e

1

bR

2 + r/R

(1 + r/R)2
. (12)

We seek the lower wave-function component in the form

χB = c

b
× ξ |m+1|e−κξw(ξ ), (13)

with c being a normalization constant, and we use the notation

ξ = r/b, κ = (1 − ε2b2)1/2 > 0. (14)

Equation (12) is a reasonable choice, since we know the
behavior of the function as ξ → 0 should be χB ∼ ξ |m+1|,
with the exponential decrease characteristic of a bound state
(e−κξ ) as ξ → ∞. Substitution of Eq. (13) into Eq. (3) and
elimination of χA yields the equation

w′′(ξ ) +
(

1+2|m+1|
ξ

− 2κ

)
w′(ξ ) +

(
� − ϒ

ξ

)
w(ξ ) = 0,

� = 1 + b/R + 2ξb/R

(1 + ξb/R)2
− (1 + 2m)b/R

1 + ξb/R
,

ϒ = κ + 2κ|m + 1|, (15)
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where the prime denotes differentiation with respect to ξ . It
is quite natural to introduce the new independent variable
ζ = 1 + ξb/R = 1 + r/R, and after we take the ansatz

w(ζ ) = ζ 1−R/bg(ζ ), (16)

we obtain a form of the confluent Heun equation [52],

g′′(ζ ) +
(

α + β + 1

ξ
+ γ + 1

ξ − 1

)
g′(ζ )

+
(

μ

ξ
+ ν

ξ − 1

)
g(ζ ) = 0, (17)

where μ = 1
2 (α − β − γ + αβ − βγ ) − η,

ν = 1
2 (α + β + γ + αγ + βγ ) + δ + η.

Explicitly the parameters are found to be

α = −2κ
R

b
, β = 1 − 2

R

b
, γ = 2|m + 1|,

δ = 2
R2

b2
− (1 + 2m)

R

b
, η = 1

2
+ R

b
(1 + 2m) − 2

R2

b2
.

(18)

The Frobenius solution to Eq. (17) is computed as a power-
series expansion around the origin ζ = 0, a regular singular
point, with a radius of convergence |ζ | < 1:

g(ζ ) =
∞∑

n=0

vn(α,β,γ,δ,η,ζ )ζ n = Hc(α,β,γ,δ,η,ζ ), (19)

where the coefficients vn satisfy a three-term recurrence
relation. This confluent Heun function Hc(ζ ) must reduce to
a polynomial, since otherwise it would increase exponentially
as ξ → ∞. Hc(ζ ) reduces to a polynomial if two conditions
are met [53]. First, we need to adhere to

δ

α
+ 1

2
(β + γ ) + N + 1 = 0, N = 1,2, . . . , (20)

or, upon solving for energy and noting the restriction |εb| < 1,
we have

ε
QES
N,mb = ±

⎧⎨
⎩1 −

(
R
b

− m − 1
2

N + 3
2 − R

b
+ |m + 1|

)2
⎫⎬
⎭

1/2

, (21)

which ensures that the (N + 1)th coefficient in the series
expansion is a polynomial in η of order N + 1. The second
necessary condition is to find some value of δ that is a root
of that polynomial, such that the coefficient vN+1 is zero
and hence (due to the recurrence relationships) all successive
coefficients are also zero. Then the series has been truncated
and Hc(ζ ) is simply a confluent Heun polynomial. For clarity,
in Eq. (21) N is the degree of the polynomial solution and is
not related to the number of nodes of the full wave function.

Notably, Eq. (20) can only be satisfied for a restricted set of
rotating, vortex states (defined by a certain quantum number m)
within the interval −∞ < m � m∗, where m∗ = m∗(R/b,N ).
Gradually decreasing the magnetic field strength (decreasing
R/b) will lead to successive vortex states undergoing a
confinement-deconfinement transition, until finally m∗ = −1
and only negatively rotating states remain.

FIG. 3. Plots of the (non-normalized) radial wave-function com-
ponent χB , through Eq. (13), for the N = 3 and m = 1 QES results.
Shown are a ground state (solid, red line) with ε3,1b = 0.956 and
R/b = 2.63, a first excited state (dashed, blue line) with ε3,1b =
0.989 and R/b = 2.14, and a second excited state (dot-dashed, green
line) with ε3,1b = 0.999 and R/b = 1.66.

As example solutions of this model, let us consider the
m = 1 state with N = 1, 2, and 3, respectively. Upon solving
for the roots of the resultant quadratic, cubic, and quartic
equations in δ, respectively, from the second condition, one
finds the magnetic field strengths R/b for each N , respectively.
For N = 1, we obtain the solution R/b = 1.66 which, from
Eq. (21), corresponds to the energy level ε1,1b = ±0.998.
Similarly for N = 2, we find the solutions R/b = 2.15
and 1.66 with associated energy levels ε2,1b = ±0.981 and
±0.999, respectively. Finally, for N = 3 we obtain the field
strengths R/b = 2.63, 2.14, and 1.66 which lead to the
quantized energies ε3,1b = ±0.956, ±0.989, and ±0.999,
respectively.

We plot in Fig. 3 these aforementioned N = 3 QES
wave-function components, through Eq. (13), which provide
examples of states with an increasing number of nodes. We
show a ground state (solid, red line), a first excited state
(dashed, blue line), and a second excited state (dot-dashed,
green line). As usual, higher node states are less tightly
localized. The position of the energy level strongly influences
the wave-function decay through the key parameter κ , defined
in Eq. (14), which appears in the exponent of χB . Therefore,
we have found that in a smooth, regularized model truly
bound modes of 2D Dirac-Weyl excitations do exist and
the excitations are limited to some maximum vorticity m∗
depending on the strength and spatial extent of the magnetic
quantum dot.

For completeness, the zero-energy states of the system are
simply obtained from Eq. (10) as(

χA

χB

)
∼

(
0

r−(m+1)(r + R)
R
b e

− r
b

)
, m � −1. (22)

Again, these states possess the expected chiral property and
show the prohibition of non-negative m vortex states. A similar
analysis for a magnetic quantum ring problem is detailed in
the Appendix and again shows the characteristic behavior of

165407-4



MASSLESS DIRAC FERMIONS IN TWO DIMENSIONS: . . . PHYSICAL REVIEW B 94, 165407 (2016)

excluding more and more positive angular momentum states
from forming with decreasing magnetic field strength R/b, an
effect which seemingly does not have a parallel for electric
potential wells with changing depth.

IV. CONCLUSIONS

Confinement of 2D Dirac-Weyl particles in nonuniform
magnetic fields, a problem of continued interest to the
mesoscopic community, has been reconsidered. We have
shown, with magnetic field profiles including examples of
magnetic quantum dots and rings, how such traps should be of a
long-range nature to hold bound states. We revealed how bound
states with one sign of angular momentum are completely
removed, in order to maintain a localized state, in the limit
of a strongly inhomogeneous magnetic field. In reaching this
limit, one will see a succession of confinement-deconfinement
transitions as states disappear into the continuum once their
value of angular momentum becomes prohibited. We hope
experimental realization of such magnetic confinement can be
achieved in the near future.

Furthermore, in graphene certain configurations of strain
can lead to pseudomagnetic fields [54], which conserve time-
reversal symmetry across the two valleys K and K ′. Thus
our results suggest to achieve bound states mechanically one
needs to create very delicate strain configurations, giving
rise to long-range magnetic fields decaying like 1/r . The
sign of the effective magnetic field will be opposite in the
two valleys, giving rise to states rotating only with positive
angular momentum in one valley and only negative angular
momentum in the other valley. This imbalance, which could
become tunable after applying a real magnetic field, may be
useful in future mesoscopic devices exploiting valley filtering.

ACKNOWLEDGMENTS

We acknowledge financial support from the CNRS through
the PICS program (Contract No. 6384 APAG) and from the
ANR under Grant No. ANR-14-CE26-0005 Q-MetaMat, as
well as support from the EU H2020 RISE project CoExAN
(Grant No. H2020-644076), EU FP7 ITN NOTEDEV (Grant

No. FP7-607521), and the FP7 IRSES projects CANTOR
(Grant No. FP7-612285), QOCaN (Grant No. FP7-316432),
and InterNoM (Grant No. FP7-612624). We would like to
thank M. Starr and L. Foxx for fruitful discussions and S.
Zadinia for a critical reading of the manuscript.

APPENDIX: DIRAC ELECTRON IN A MAGNETIC
QUANTUM RING

It is straightforward to adapt the magnetic dot problem of
Sec. II to describe a toy model of a magnetic quantum ring,
defined by

Bz(r) = �

e

1

br
�(r − R), (A1)

where �(z) is Heaviside’s step function. Now, inside the ring
(r � R) we have the usual free particle solution in terms
of a Bessel function of the first kind, χI

B = cI

b
J|m+1|(εr),

and outside the ring (r > R) we again have a wave-function
component like that in Eq. (6). Matching both wave-function
components at the ring boundary r = R yields the following
transcendental equation for the allowed eigenvalues:

2κaII

U
(
aII + 1,bII + 1, 2κR

b

)
U

(
aII ,bII ,

2κR
b

) − εb
J|m+1|+1(εR)

J|m+1|(εR)

+ κ − 1 = 0. (A2)

Solutions of Eq. (A2) show how, even in a true ring with
an asymptotically decaying field, bound states exist. The
dependence on the parameters of the system in Eq. (A2) is
simple in the limit R/b � 1, when Eq. (9b) is recovered. This
result then forces one to introduce a caveat to the belief that
bound states do not arise in magnetic rings. The chirality of
the ground state is illustrated via the zero modes, with the
following wave-function components,(

χI
B

χII
B

)
∼ r−(m+1)

(
1

e
R−r

b

)
, χI

A = χII
A = 0, m � −1,

(A3)

showing the complete occupation on B sites only.
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