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Nanohelices as superlattices: Bloch oscillations and electric dipole transitions
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Subjecting a nanohelix to a transverse electric field gives rise to superlattice behavior with tunable electronic
properties. We theoretically investigate such a system and find Bloch oscillations and negative differential
conductance when a longitudinal electric field (along the nanohelix axis) is also applied. Furthermore, we study
dipole transitions across the transverse-electric-field-induced energy gap, which can be tuned to the eulogized
terahertz frequency range by experimentally attainable external fields. We also reveal a photogalvanic effect by
shining circularly polarized light onto our helical quantum wire.
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I. INTRODUCTION

Helices have played a recurring role in technology, from
their use in Archimedes’ screws, employed to transfer water
in the 3rd century BC, to the modern day usage of giant coils
to support buildings against the vibrations of earthquakes.
As in many cases, nature arrived at helices before man [1],
and examples can be found in plant tendrils, seed pods, and
seashells at the macroscopic level down to the celebrated
double-helix structure [2] of DNA at the nanoscale.

In condensed matter physics, a series of pioneering works
has seen the realization of nanohelices by several different
growth and fabrication techniques [3–12]. The remarkable
progress in quality is demonstrated by the recent report of
the quantum Hall effect in this novel geometry [13]. Already
there is progress in potential applications from stretchable
electronics [14] to sensing [15] to energy storage [16]. Even
DNA itself has been shown to be promising for molecular
electronics [17,18]. Recently, a method has been proposed
to form a carbon nanohelix by hydrogen doping a graphene
nanoribbon [19], which opens up a possible new route to
further exploit the superlattice properties of rolled graphene.

It has been shown that the helical motion of electrons
subjected to a transverse electric field in chiral carbon
nanotubes [20] can give rise to superlattice properties such
as Bragg scattering, a precursor to Bloch oscillations [21].
While Bloch oscillations have been observed in semiconductor
superlattices [22,23], cold atoms in optical lattices [24,25],
and photonic structures [26–29], this phenomenon, as well as
negative differential conductance (NDC), have not yet been
seen in nanohelices. Importantly from an applications point of
view, superlattice physics is the basis for microwave generation
by devices such as the quantum cascade laser [30,31].
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In this work we consider an electron moving along a
semiconductor nanohelix [32–34] in a transverse electric
field, which gives rise to a periodic potential and so physics
typical of superlattices. Importantly, our presented system
has the significant advantage of tunability compared to usual
semiconductor superlattices, which is due to the freedom
to modulate the applied electric field. When a longitudinal
electric field is applied to the system, we find Bloch oscillations
at terahertz (THz) frequencies. The so-called THz gap, the
as yet under-utilized part of the electromagnetic spectrum
in between microwave and infrared radiation, is increasingly
being targeted by device physicists [35–37]. Several THz
applications of carbon nanotubes have been proposed [38–42],
and similar useful behavior from nanohelices should also be
possible.

We also consider electric dipole transitions across the
energy gap opened up by the transverse-electric field, which
again can be modulated into the THz range, and discuss the
optical selection rules and the effects of shining both linearly
and circularly polarized light. In particular, we show that a
photogalvanic effect arises from shining circularly polarized
light along the axis of the helix. This proposal joins a small
number of other schemes for producing current from light put
forward for curved quantum wires [43–46].

Since 1900 and the work of Drude [47], one-particle
models of electrons constrained upon a helical path have
been intermittently investigated, principally to study optical
activity. Previous works have focused on free motion on helix
[48,49], as well as motion in an effective harmonic potential
[50] and with an external static magnetic field [51]. Here we
start by studying the case of a transverse electric field, where
the Schrödinger equation for an electron in a helix is

− �
2

2M∗
d2

dz2
ψ + eE⊥R cos

(
2πz

d

)
ψ = εψ, (1)

where the circular helix is of radius R and pitch d, as
sketched in Fig. 1. The effective electron mass Me is
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FIG. 1. Sketch showing the geometry of the helix considered and
the orientation of the applied electric fields. The transverse field E⊥
is in place throughout this work, and a further parallel filed E‖ is
utilized in Sec. III.

geometrically renormalized to M∗ = Me(1 + R2/d̄2), where
d̄ = d/2π . We have used helical coordinates r = (x,y,z) =
[R cos(ξz/d̄),R sin(ξz/d̄),z], where ξ = ±1 denotes a left-
handed or right-handed helix, respectively. It is worth men-
tioning that in Ref. [34] the coordinate along the helical line
was used, but here we have chosen the coordinate z (along the
axis of the helix) as it is more convenient to study the effects of
external fields, and throughout this work we take ξ = 1. The
one-dimensional periodic potential V (z) = V (z + nd), which
gives rise to superlattice effects, has a period 2πd̄ . In the limit
d̄ → 0 we recover the standard particle on a ring. Most notably,
our electron on a helix system is equivalent to an electron on a
quantum ring pierced by a magnetic flux and subject to a lateral
electric field [52–55]. In the Aharonov-Bohm ring problem,
the role of the quasimomentum in the nanohelices is formally
played by a magnetic flux in the units of the flux quantum.
Compared to the rings, the helix geometry has the advantage
of not needing high magnetic fields to reveal similar physics.

The rest of this work is organized as follows. We study in
detail the solution of Eq. (1) in Sec. II and go on to discuss
superlattice properties and Bloch oscillations of nanohelices
in Sec. III. In Sec. IV we investigate electric dipole transitions,
while we draw some conclusions in Sec. V. Finally, Appendix
A provides the wave equation solution using special functions,
Appendix B displays the full details of the small matrix results
utilized in the main part of the text, and Appendix C considers
helices with an inhomogeneous radius.

II. SOLUTION AS AN INFINITE MATRIX

The exact solution of Eq. (1) can be expressed in terms of
Mathieu functions, as described in Appendix A, where we also
provide an analytic expression for the energy spectra with hard-
wall boundary conditions. However for our purposes here, it
is more illuminating to seek a solution in terms of the Bloch
functions

�(z) = eikzz
∑
m

bmeimz/d̄ , (2)

such that we arrive at an infinite system of equations for
coefficients bm,

[(q + m)2 − λ]bm + u(bm−1 + bm+1) = 0,

m = 0,±1,±2, . . . , (3)

where we have transformed into the dimensionless quantities
q = kzd̄,λ = ε/ε0(d̄),u = eE⊥R/2ε0(d̄), and the energy scale
is ε0(d̄) = �

2/2M∗d̄2. Equation (3) is equivalent to the N -
times-N tridiagonal matrix Hamiltonian HN ,

HN =

⎛
⎜⎜⎜⎝

(q + Ñ )2 u 0 . . .

u (q + Ñ − 1)2 u . . .

0 u (q + Ñ − 2)2 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠,

(4)

where we use the floor function to define Ñ = �N/2�. It is no-
ticeable that the Hamiltonian is periodic in the (dimensionless)
electron momentum along the helical axis q. This periodicity
is an important property which is lost when considering small
matrices [33,34]. Additionally, it allows us to restrict our
considerations to the first Brillouin zone −1/2 < q < 1/2
only, without any loss of physical insight. In fact, for practical
calculations it is sufficient to consider the even shorter interval
0 < q < 1/2 due to the symmetry with respect to the change
of sign of q.

One needs to find the roots of the resultant characteristic
equation formed from Eq. (4) to find the energy bands. An
elegant method to find the determinant of our tridiagonal N -
by-N matrix is via the continuant KN formalism [56], which
observes the recurrence relation

KN = [(κ + N − 1)2 − λ]KN−1 − u2KN−2, (5)

subject to the initial conditions K0 = 1,K1 = κ2 − λ. Car-
rying out the continuant calculations Eq. (5) in the dummy
variable κ , the desired determinant of Eq. (4) is then found
upon making the replacement κ → q + 1 − N ′, such that the
continuant KN → det (HN − λI ). Here we used the notation
N ′ = 	N/2
, with the help of the ceiling function. Then the
electron velocity can then be neatly calculated via Euler’s chain
rule

vz = 1

�

∂ε

∂kz

= − �

2M∗d̄

∂
∂q

det (HN − λI )
∂
∂λ

det (HN − λI )
, (6)

which, as it maintains periodicity in q, is important for physical
properties such as Bloch oscillations as we shall see later on
in Sec. III.

We plot in Fig. 2 the lowest energy bands λ in three regimes
of interest. One can gain further insight into the nature of the
energy bands by examining the limiting cases of low and high
fields, as in Figs. 2(a) and 2(c), respectively, which can be
treated analytically. The intermediate regime of Fig. 2(b) can
be probed with an expedient analytic replacement.

A. The low field limit

In the limit of a weak electric field u � 0.2, one can
approximate the lowest energy bands with a truncated matrix
HN . The largest polynomial that can always be solved
algebraically is quartic, as proved by Abel’s impossibility
theorem. Therefore, one can treat analytically the N = 2,3,4
band models (please see Appendix B for explicit details) by
cutting off Eq. (4). The result can be seen in Fig. 2(a) to
be in excellent agreement with the result from numerically
diagonalizing a large matrix.
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(a) (b) (c)

FIG. 2. Energy spectra for an electron on a helix in a transverse electric field E⊥, calculated via Eq. (3) (solid red lines) and various
approximations (dashed blue lines). We present (a) the low field regime, here we take u = 0.1 and also show the two-band analytical result of
Appendix B 1. (b) The medium field regime, here we take u = 0.2 and also show the analytic approximation result of Eq. (11) for the lowest
band. (c) The high field limit, here we take u = 2 and also show the flat band mapping results of Eq. (10).

B. The high field limit

In this section we consider the limit of a strong perpen-
dicular electric field u � 1. To our knowledge this limit was
not considered analytically for helices, but its manifestations
have been clearly seen from numerics for a similar quantum
ring problem [57,58]. In this regime, the energy of the electron
is much smaller than the amplitude of the cosine potential in
Eq. (1) such that the particle is confined near the bottom of
the potential where only motion near z/d̄ = (2l + 1)π , where
l is an integer, needs to be examined. Therefore we treat the
periodic potential near its minima as a harmonic oscillator
potential

Vl(z) → −eE⊥R
(
1 − 1

2ξ 2
l

)
, ξl = (2l + 1)π − z/d̄. (7)

The required periodicity is accounted for within the nearest
neighbor tight-binding method [59]. The corresponding Bloch
wave functions �n, which serve as the basis for the tight-
binding spectrum calculations, are given in terms of properly
normalized and centered harmonic oscillator eigenfunctions
ψn(ξl). For the lowest subband n = 0, we have

�0 = 1√
N

∑
l

eiπq(2l+1)ψ0(ξl),

(8)

ψ0(ξl) =
(

u1/2

πd̄2

)1/4

e− u1/2

2 ξ 2
l ,

where N is the number of unit cells, which corresponds to
the number of turns of the helix. Carrying out the transfer
and overlap integrals for the lowest band with the true cosine
potential of Eq. (1) yields

λ0 = −2ue
− 1

4u1/2 + 1
2u1/2 + 2γ0 cos(2πq)

1 + 2e−π2u1/2 cos(2πq)
,

(9)

γ0 = e−π2u1/2

[
u
(

2e
− 1

4u1/2 − π2
)

+ 1

2
u1/2

]
,

which demonstrates the exponential suppression of the band-
width with increasing field strength u. In the limit of an
impenetrable harmonic potential, the mapping to the harmonic
oscillator becomes exact and the band structure can be written
compactly as flat bands

λn = −2u + u1/2(1 + 2n), n = 0,1,2, . . . , (10)

which for the lowest level λ0 = u1/2 − 2u has been found
to be a good approximation even for u = 2 (where the
relative error in the first Brillouin zone is �λ0/λ0 < 2.5%)
as shown in Fig. 2(b). Therefore, when u � 1 and further
flat bands appear, Eq. (10) provides the most important term
and demonstrates how the system exhibits dispersionless band
physics, and consequently a high density of states, in the strong
field regime. Notably, systems with flat bands have recently
attracted significant attention due to enhanced interaction
effects and electronic instabilities which can arise from the
high density of states [60].

C. The periodic approximation

As was previously mentioned, the periodicity of the band
structure cannot be restored via calculations from small trun-
cated matrices. The most convenient way to ensure periodicity
for intermediate values of u is to use the following function to
describe the lowest band:

λ0 = α + 1
2β[1 − cos(2πq)], (11)

as is familiar from the solution of a one-dimensional periodic
potential in the tight-binding approximation. The parameters α

and β are found from fitting Eq. (11) to the large matrix result
at the center and edge of the first Brillouin zone q = (0,1/2),
respectively. In the limit u � 1 the parameter α → λ0, as
defined in Eq. (10). This approximation given by Eq. (11) is
accurate to within 1% relative to ε0 when u ∼ 0.2, as is shown
in Fig. 2(b). Crucially this approximation ensures periodicity
of the solution which is essential for a proper treatment of
Bloch oscillations, which now follows.

III. BLOCH OSCILLATIONS

It follows from a consideration of the velocity operator
v̂z = i

�
[Ĥ ,ẑ] that the expectation value of electron velocity

is

〈vz〉 = �kz

M∗ + �

M∗d̄

∑
m

m|bm|2, (12)

which is equivalent to calculations via Eq. (6). These expres-
sions describe the free electron velocity and are plotted in
Fig. 3(a). One notices that the velocity is zero at the center
of the Brillouin zone and is suppressed at the edges of the
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FIG. 3. (a) Free electron velocity in the first Brillouin zone, with
u = 0.3 (solid red line), u = 0.2 (dashed blue line), and u = 0.1
(dotted green line), respectively. (b) Drift velocity as a function of
applied field, without (solid red line) and with (dashed blue line) the
effect of tunneling from the ground band taken into account. Here
u = 0.2 and ε0τ/� = 10.

Brillouin zone. A decrease in the (dimensionless) transverse
electric field strength u leads to a rescaling of the curve such
that the velocity maxima vz(q = q̃) move further towards the
Brillouin zone edges, as governed by

vz(q̃) = ± �

2M∗d̄
2uf 3/2, (13a)

q̃ = ± 1
2 ∓ uf 1/2, f = (2u)−2/3 − 1, (13b)

which approaches the limiting velocity vz = ±�/2M∗d̄ as
u → 0. To account for scattering, for example due to phonons
or impurities, one may employ the Tsu-Esaki formula [61]
for drift velocity vd = ∫ ∞

0 exp(−t/τ )dvz, where τ is the
phenomenological scattering time. In an applied field E‖, and
with the semiclassical motion kz(t) = eE‖t/�, one obtains
in the periodic approximation of Eq. (11) the following
expression for drift velocity in the lowest subband:

v0th
d = �

2M∗d̄
πβg

1 + g2
, g = E‖

Eτ

, (14)

with Eτ = �

edτ
. We plot in Fig. 3(b) the function Eq. (14) as a

solid red line, showing the maxima at g = 1. Beyond this point
(E‖ > Eτ ) the decreasing drift velocity implies a NDC, since
current is proportional to drift velocity via I = envd , where n

is the electron density. The threshold for observing this NDC
effect is an electric field strength of E‖ = 1.3 × 103 V/cm and
scattering time of τ = 0.5 ps for a helix of pitch d = 10 nm.

For higher applied voltages, effects such as Zener tunneling
between the first and ground band should be taken into account.
Within the WKB approximation, the tunneling probability is
an exponential factor [62]

TWKB ≈ exp

(
−16

3

√
2π

ε0τ

�

u3/2

g

)
. (15)

To calculate the total drift velocity of the two-band system,
one needs to find the drift velocity of the second lowest band
λ1. This can be done semianalytically, using the truncated
two-band analysis of Appendix B 1. The drift velocity of the
first excited band is found to be

v1st
d = �

2M∗d̄

{
g

π
+ e−π/g[γ (u,g) + D0(u,g) − D2(u,g)]

}
,

(16)

γ (u,g) = π2u
g

[
H1

(
2πu
g

)
− Y1

(
2πu
g

)]
− 2πu

g
,

where H1(ξ ) is the Struve function and Y1(ξ ) is the Bessel
function of the second kind (both of order one) and we
introduce the function

Dn(u,g) =
∫ 1

0

ξneπξ/g

(ξ 2 + 4u2)
n+1

2

dξ, (17)

which can be readily integrated numerically. The total drift
velocity of the two-band system can then be evaluated with
the help of Eqs. (14)–(16) via

vd = (1 − T )v0th
d + T v1st

d , (18)

and we plot the result in Fig. 3(b) as the dashed blue line. This
curve reveals that at higher applied fields E‖, above g � 4,
the drift velocity (and so current) will again start to increase.
Then it follows that the current-voltage characteristic of the
nanohelix will be of the so-called “N type,” analogous to Gunn
diodes [63,64] and tunnel diodes [65,66]. Thus it is conceivable
that nanohelices could be employed in device physics as active
elements in amplifiers and generators.

For long electron scattering times, Bloch oscillations at
the mini-zone boundary will occur at a terahertz frequency
ωB = edE‖/� = 1.5 THz for nanohelices of pitch d = 10 nm
and E‖ = 103 V/cm, suggesting nanohelices as a useful com-
modity to resolve outstanding challenges in high frequency
generators and amplifiers. We should mention that we do not
take into account the effect of charged electric-field domains
[67–69] either stationary or traveling through the superlattice,
as in this work we are primarily concerned with only a proof
of concept of superlattice behavior in nanohelices, however it
will be a subject of future research.

IV. ELECTRIC DIPOLE TRANSITIONS

To understand how our system of a nanohelix subject
to a transverse electric field interacts with electromagnetic
radiation we calculate the momentum operator matrix element
T = 〈a|p|b〉, which is proportional to the transition dipole
moment. Here the momentum operator p̂ is sandwiched
between the ground band |a〉 and second lowest band |b〉.
Explicitly, the self-adjoint momentum operators are [48]

p̂x = x̂i�
R/d̄

1 + R2/d̄2
[sin(z/d̄)∂z + 1/(2d̄) cos(z/d̄)],

(19a)

p̂y = −ŷi�
R/d̄

1 + R2/d̄2
[cos(z/d̄)∂z − 1/(2d̄) sin(z/d̄)],

(19b)

p̂z = −ẑi�
1

1 + R2/d̄2
∂z. (19c)

The presence of the trigonometric functions for transverse
(x,y) polarized light leads to the optical selection rule
that allows transitions only between states with the angular
momentum differing by unity (�m = ±1), whereas for the
z-polarized light �m = 0.

We present in Fig. 4 the absolute square of the momentum
operator matrix element |T |2 for both linearly polarized light
normal to the helix axis and for right-handed circularly
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FIG. 4. Transition dipole moments in the first Brillouin zone as
a function of the dimensionless wave vector q of the photoexcited
electrons, associated with both (right-handed) circularly polarized
light |Tx + iTy |2 denoted by a dashed blue line and z-polarized light
|Tz|2 denoted by a solid red line, with u = 0.1.

polarized light propagating along the helix axis. The result
for the z-polarized light shows a distinctive Mexican-hat-like
profile, with global maxima at the edges of the Brillouin zone
and a local maximum at the center. This follows from the
selection rule: the ground state is almost a pure m = 0 state,
whereas the first excited state is mostly an admixture of the
m = ±1 states, with a contribution from the m = 0 at the edges
of the first Brillouin zone. Thus the peaks at the edges arise
from the dominant overlap of the m = 0 contributions. A small
bump near q = 0 is due to the second-order in u perturbative
corrections, enhanced due to the degeneracy of the m = ±1
states.

The right-handed circularly polarized light result shows a
drastic on-off switching behavior across the two halves of
the first Brillouin zone, in a left-sided “ski jump” wedge
profile with a maximum at the center. The result for left-
handed circularly polarized light is simply a mirror image.
This result suggests a photogalvanic effect, where one can
choose the net direction of charge carriers by shining the
appropriate circularly polarized light. Therefore the nanohelix
is a promising candidate for a polarization sensitive light
detector.

Here we neglected possible inhomogeneities in the helix
radius, which are of decreasing importance due to the perpetual
increase in nanohelices of high quality. Nevertheless, we dis-
cuss inhomogeneities briefly in Appendix C to be quantitative.

V. CONCLUSIONS

We have investigated two interesting areas of superlattice
physics which can arise in nanohelices, a truly tunable
superlattice system. First, we showed that the combined
effects of a transverse and longitudinal electric field lead to
Bloch oscillations in the highly sought-after THz range, and
NDC reminiscent of tunneling diodes. Both of these features
are attractive for future optoelectronic devices. Second, we
subjected our system of a helix in a transverse electric field to
both circularly polarized electromagnetic waves propagating
along the helix axis and the light linearly polarized along the
helix axis. We showed that a photogalvanic effect arises in the
circularly polarized case.

With the increasingly sophisticated fabrication techniques
of complex nanostructures allowing for the assembly of
impressively uniform helices [70], we hope our work will
inspire experiments on the superlattice and optical properties
of nanohelices in the near future and eventually aid the
realization of novel THz devices. Future work will inevitably
include a study of the influence of a magnetic field on a
superlattice behavior [71] in this helical geometry.

ACKNOWLEDGMENTS

We would like to thank E. Hendry for fruitful discussions
and A. M. Alexeev for a critical reading of the manuscript.
We acknowledge financial support from the CNRS and from
the ANR under Grant No. ANR-14-CE26-0005 Q-MetaMat,
as well as the EU H2020 RISE project CoExAN (Grant
No. H2020-644076), EU FP7 ITN NOTEDEV (Grant No.
FP7-607521), and the FP7 IRSES projects CANTOR (Grant
No. FP7-612285), QOCaN (Grant No. FP7-316432), and
InterNoM (Grant No. FP7-612624).

APPENDIX A: ELECTRONS CONSTRAINED TO A
NANOHELIX IN A TRANSVERSE FIELD

Equation (1) is a limiting case of the more general Lamé
differential equation or Schrödinger equation with Jacobi
elliptic function potential [72]. An extensive study of the
Mathieu equation, with an application to an electron moving
in a simple cubic lattice, can be found in the classic work of
Slater [73]. Equation (1) has as its two linearly independent
solutions the Mathieu sine S4λ(4u,z/2d̄) and Mathieu cosine
C4λ(4u,z/2d̄) functions, respectively, with characteristic value
4λ, parameter 4u, and variable z/2d̄ .

Here we consider a particle constrained to a nanohelix of
N turns in a transverse field, defined by the potential V =
2u cos(z/d̄) for 0 � z/d̄ � 2πN and V = ∞ otherwise. With
normalization constant cn, the eigenfunctions are

ψn = cn√
d̄

S4λ(4u,z/2d̄), 0 � z/d̄ � 2πN , (A1)

and ψn = 0 otherwise. The eigenenergies are given by solu-
tions to the transcendental equation

S4λ(4u,πN ) = 0, (A2)

FIG. 5. Plot of bound state energies for a helix of (a) N = 2 and
(b) N = 3 turns as a function of transverse electric field for the four
lowest states: the ground state (solid red line) along with the first
excited (dotted blue line), second excited (dashed green), and third
excited state (dot-dashed orange line).
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FIG. 6. Comparison of the analytical results obtained with small matrices (blue dashed lines) with numerical results (solid red lines) from
Eq. (3). Here (a), (b), and (c) correspond to the two-, three- and four-band analytical results with u = 0.2,0.3,0.4, respectively.

which recovers the infinite square well result in the limit of
vanishing potential strength

λn =
(

n

2N

)2

, u → 0, (A3)

where n is an integer. We plot in Fig. 5 the energy spectra
of the four lowest-lying states from Eq. (A2). It is noticeable
how in progressing from the infinite square well u � 1 limit
towards the harmonic oscillator u � 1 limit the neighboring
pairs of states coalesce, but intersections are forbidden as is
known from the theory of Mathieu functions.

APPENDIX B: SOLUTIONS OF TRUNCATED MATRICES

For completeness, here we present all of the analytical
results in the N = 2,3,4 band approximations of Eq. (4). The
lowest band is denoted n = 0 and the higher bands are labeled
n = 1,2,3 successively. We plot in Fig. 6 these small matrix
models.

1. Two-band approximation

The eigenvalues of the two lowest bands n = 0,1 are

λn = (
q + 1

2

)2 + 1
4 ∓ s, s =

√(
q + 1

2

)2 + u2. (B1)

The accuracy of this truncation can be improved by using
Eq. (B1) for −1/2 < q < 0 only. Making use of the periodicity
of the problem, one may make the substitution q → q − 1 in
Eq. (B1) and use the resulting expression for 0 < q < 1/2. One
then finds this is a reasonable approximation for both bands
for u � 0.2 (the error in ε in the first Brillouin zone does not
exceed 5%, relative to ε0). This model also well describes the
position and size of the peaks and troughs of the free electron
velocity via Eq. (13).

2. Three-band approximation

The lowest three bands n = 0,1,2 are arrived at via
Cardano’s formula with Vieta substitution

λn = 2

3
+ q2 + 2

3

√
1 + 12q2 + 6u2

× cos

(
θ

3
+ π

3
[n − 2][3n − 1]

)
, (B2)

where

cos (θ ) = 36q2 − 9u2 − 1(
1 + 12q2 + 6u2

)3/2 , (B3)

which is a good approximation for the three lowest bands
when u � 0.2 (such that the error in ε the first Brillouin zone
is below 1.5%, relative to ε0). This model also tells us that at
the edge of the first Brillouin zone the band gap between the
ground and first excited state is 2u, a result which is utilized
in Eq. (15).

3. Four-band approximation

The formed quartic equation λ4 + bλ3 + cλ2 + dλ + e =
0, where

b = −6 − 4q − 4q2, (B4a)

c = 9 + 8q + 14q2 + 12q3 + 6q4 − 3u2, (B4b)

d = −4 − 4q − 2q2 − 10q4 − 12q5 − 4q6

+ 6qu2 + 6q2u2 + 11u2, (B4c)

e = 4q2 + 4q3 − 7q4 − 8q5 + 2q6 + 4q7 + q8

− 8qu2 − 11q2u2 − 6q3u2 − 3q4u2 − 8u2 + u4

(B4d)

has roots governing the four lowest bands n = 0,1,2,3, given
by Ferrari’s quartic formula

λ0,1 = −1

4
b − S ∓ 1

2

(
−4S2 − 2P + U

S

)1/2

, (B5a)

λ2,3 = −1

4
b + S ∓ 1

2

(
−4S2 − 2P − U

S

)1/2

, (B5b)

where

P = c − 3
8b2, U = d + 1

8b3 − 1
2bc, (B6a)

S = 1

2

[
−2

3
P + 1

3

(
Q + R

Q

)]1/2

, (B6b)

Q =
[

1

2
T + 1

2
(T − 4R3)1/2

]1/3

, (B6c)

R = c2 − 3bd + 12e, (B6d)

T = 2c3 − 9bcd + 27b2e + 27d2 − 72ce. (B6e)

The four-band approximation is excellent for u � 0.2 (where
the error in ε in the first Brillouin zone is below 1.5% for the
lowest four lowest bands, relative to ε0).
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While larger truncated matrix models cannot be expressed
algebraically, analytical expression can be obtained with the
help of special functions for the five-band (with Jacobi theta
functions), six-band (with Kampé de Fériet functions), and
seven-band (with hyperelliptic functions and associated theta
functions of genus 3) models. In general, any algebraic
equation can be solved with modular functions, and the roots
should be expressible with hyperelliptic integrals and high
genus theta functions [74].

APPENDIX C: A ONE-DIMENSIONAL QUANTUM HELIX
WITH AN INHOMOGENEOUS RADIUS

Despite remarkable advances in the synthesis of nanohe-
lices, there is still some degree of inhomogeneity in the radius
of a given helix. We consider the effect of a changing helix
radius [75,76] along the helix axis, in the variable radius
coordinates

r = [R(z) cos(z/d̄),R(z) sin(z/d̄),z]. (C1)

The equation of motion equation becomes a free Schrödinger

equation in the new dependent variable

ξ (z) =
∫ z

h(z′)dz′, h(z) = [1 + R(z)2/d̄2 + R′(z)2]1/2,

(C2)

where R′(z) represents a derivative with respect to z, such that
the eigensolutions are

ψn = cn√
d̄

sin(kξ ), εn = �
2

2M

(
nπ

ξN

)2

, (C3)

where k = (2Mε/�
2)

1/2
and ξN = ξ (2πN d̄). The limiting

case of a homogeneous helix R(z) = R recovers the solution
εhomo
n = �

2

8M∗d̄2 ( n
N )2, as found in Eq. (A3) in the limit of zero

transverse field. Considering a Gaussian bump inhomogeneity
described by R(z) = R[1 + γ exp(−z2/d̄2)], one finds the
relative energy eigenstates do not deviate dramatically from
the homogeneous case. For example, εbump/εhomo ≈ 0.95 for a
helix of parameters R/d̄ = 1 andN = 1, with bump parameter
γ = 0.3.
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