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Magnetic quantum dots and rings in two dimensions
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We consider the motion of electrons confined to a two-dimensional plane with an externally applied
perpendicular inhomogeneous magnetic field, both with and without a Coulomb potential. We find that as
long as the magnetic field is slowly decaying, bound states in magnetic quantum dots are indeed possible.
Several example cases of such magnetic quantum dots are considered in which one can find the eigenvalues
and eigenfunctions in closed form, including two hitherto unknown quasi-exactly-solvable models treated with
confluent and biconfluent Heun polynomials. It is shown how a modulation of the strength of the magnetic field
can exclude magnetic vortexlike states, rotating with a certain angular momenta and possessing a definite spin
orientation, from forming. This indicates one may induce localization-delocalization transitions and suggests a
mechanism for spin separation.
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I. INTRODUCTION

The energy levels of an electron in both a uniform magnetic
field and harmonic oscillator potential (so-called Fock-Darwin
levels) have been known since the 1920’s [1,2]. When only
the magnetic field is present, the states are the famous
Landau levels [3,4]. These single particle exact solutions
have formed the basis for more detailed research involving
electrons in a magnetic field, for example in the Laughlin wave
function [5] and other many-body wave functions [6–8], in
the role of electron-electron interactions [9], electron-phonon
interactions [10,11], and excitons [12–14]. It is therefore
worthwhile to investigate other magnetic profiles which admit
analytic solutions.

There is continued interest in two-dimensional (2D) elec-
tron gases exposed to inhomogeneous magnetic fields [15,16],
due to the variety of fundamental physics that can be explored,
including the fractional quantum Hall effect, superconductiv-
ity, and spintronics [17]. Various methods exist for realizing
such nonuniform fields, including the use of patterned gates
made out of ferromagnets [18–20] or superconductors [21,22].
Last year, an inhomogeneous magnetic field was created
using a thin film of type-II superconducting niobium in close
proximity to the studied system of graphene [23]. Another
method to probe a spatially varying magnetic field is to use
molecular beam epitaxy regrowth technology to produce a
nonplanar 2D electron gas, and then to apply a constant
magnetic field to the curved structure [24].

Theoretically, nonuniform magnetic fields have been exten-
sively studied in magnetic quantum dots and magnetic barriers,
both sharply defined [25–35] and smoothly defined [36–39].
There have also been many works on hydrogen atoms [40,41]
in external magnetic fields, with both constant [42–44] and
nonhomogeneous [45–47] fields considered. In particular, the
importance of spin effects have been examined in detail for
magnetically confined excitons [46,48]. Furthermore, progress
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on the many-body problem has been initiated with the
treatment of two interacting electrons in a magnetic quantum
dot [49].

Here, we investigate several different inhomogeneous
magnetic fields perpendicular to a 2D sheet of electrons.
Contrary to previous works, we treat slowly decaying magnetic
fields, dropping off as either 1/r or 1/r3/2, and include the
effect of a cutoff at the origin. Notably, a 1/r magnetic field
has recently been theoretically employed to trap electrons
with a linear dispersion [50], which is hard to achieve with
scalar potentials [51–53] but can be accomplished in various
magnetic field configurations [54].

Recently, it was shown that an electron cannot be trapped
in a magnetic quantum dot defined by quickly decaying fields,
due to an asymptotic reduction of the Schrödinger equation
to Bessel’s differential equation [35]. However, here we find
that for slowly-decaying fields, dropping slower than 1/r2,
there can indeed be square-integrable, truly confined states
in magnetic traps. Our method of attacking this problem is
via exact and quasi-exactly-solvable models [55–57], and we
make use of the increasingly influential Heun functions [58].
Most notably, our integrable models unveil that the strength
of the magnetic field determines whether certain rotations
of the vortexlike states are prohibited or not, such that
one may provoke localization-delocalization transitions by
adjusting the field strength. As the nature of the exclusion
of some vorticities (which have a set azimuthal quantum
number) in the magnetic quantum dots is dependent on the
electron spin orientation, it suggests that the system can act
to spin polarize charged electronic modes. We also consider
the consequences of introducing a Coulomb (or modified
Coulomb) potential; please see Fig. 1(a) for all potential profile
sketches.

The Schrödinger-Pauli Hamiltonian, which captures the
interaction between the spin of an electron and a magnetic field
B = ∇ × A (entering via the minimal coupling substitution
p → p + eA) is

H = 1

2M
(σ · [ p + eA])2, (1)
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FIG. 1. (Upper panel) A plot of the Coulomb potential (dashed
line), as well as the modified Coulomb potential (solid line) consid-
ered in Eq. (23). Here U1 = 1/3. (Lower panel) The inhomogeneous
magnetic fields considered, without a cutoff at small distances (dashed
line) as in Eq. (3), and with a smooth (dotted line) or sharp (solid line)
regularization scheme, as in Eqs. (11) and (34), respectively.

where σ are Pauli’s spin matrices and M is the electron
mass. Equation (1) naturally arises from a Foldy-Wouthuysen
transformation [59] of the Dirac equation in the nonrelativistic
limit, keeping the Zeeman term and neglecting all higher
terms (Darwin term, Pauli spin-orbit coupling term, and so
on). For a 2D planar system experiencing an electrostatic
potential energy V (r) and a perpendicular magnetic field
B = (0,0,Bz(r)), the Pauli equation reads(

1

2M
[ p + eA]2 + τμBBz

)
�τ + V (r)�τ = E�τ , (2)

where μB is the Bohr magneton, τ = ±1 takes into account the
electron spin orientation, and now the magnetic field is related
to the vector potential by Bz = r−1∂r (rAθ (r)). Equation (2)
is separable in polar coordinates with the wave function
�τ (r,θ ) = (2π )−1/2eimθψτ (r), where m = 0, ± 1, ± 2... is
the azimuthal quantum number. In what follows, energy E

is rescaled via ε = 2ME/�
2 and U (r) = 2MV (r)/�

2.
One can show that a (purely) magnetic quantum dot

decaying asymptotically like Bz ∼ r−γ , where γ is a positive
number, only leads to square-integrable solutions if 0 < γ <

2. Otherwise, the vector potential terms in Eq. (2) drop out at
large distances such that the solutions are Bessel functions.
Now we present a plausibility argument as to why this
precludes bound states: To be normalizable, this long range
solution must be the modified Bessel function of the second
kind, which imposes ε < 0. The magnetic quantum dot at
short range must have (almost by definition) a region of

approximately constant magnetic field, such that the solutions
here look like Landau wave functions. Taking the limit of this
short range region becoming large, the eigenvalues will tend
to the (positive valued) Landau levels, which contradicts the
original requirement of ε < 0.

The rest of this paper is devoted to solutions of Eq. (2) and
is organized as follows. We study an electron in a Coulomb
potential in an inhomogeneous magnetic field in Sec. II and
use a regularization scheme for the field in Sec. III. We use a
quasi-exactly-solvable model in Sec. IV, adding further weight
to our arguments that confinement in magnetic quantum dots is
possible. A free electron in a magnetic quantum dot is treated
in Sec. V, and finally we draw some conclusions in Sec. VI.
Appendix A comments on spinless particles while Appendix B
details some complimentary results for electrons in a magnetic
quantum ring.

II. COULOMB PROBLEM WITH AN INHOMOGENEOUS
MAGNETIC FIELD

We consider an electron under the Coulomb potential
U (r) = −U0r . In terms of the fine structure constant α =
e2/(4πε0�c) ≈ 1/137, it has a strength defined by the inverse
length U0 = 2αMc/� ≈ (0.26Å)−1. Let us choose as an
inhomogeneous magnetic field

Bz(r) = �

e

1

br
, (3)

where the length b effectively parameterizes the strength of
the field, as shown in Fig. 1(b). It follows from the radial part
of Eq. (2), that after using a variable ξ = r/b, we need to solve

ψ ′′ + ξ−1ψ ′ + [εb2 − 1 + (U0b − 2m − τ )ξ−1 − m2ξ−2]ψ

= 0, (4)

where ′ represents taking a derivative with respect to ξ . The
solution required behaves for small ξ proportional to ξ±|m|,
while in the regime εb2 < 1 it behaves asymptotically (ξ →
∞) as ψ ≈ e±κξ , where

κ = (1 − εb2)1/2. (5)

Hence we seek a square-integrable solution in the form

ψ = c

b
× ξ |m|e−κξw(ξ ), (6)

where c is a normalization constant, such that we obtain for w

the equation

ξw′′ + (b0 − 2κξ )w′ − 2κa0w = 0,

where

a0 = 1

2
+ |m| − U0b − 2m − τ

2κ
, b0 = 1 + 2|m|. (7)

This is a form of Kummer’s differential equation, which has
as a solution Kummer’s function [60]

w = F (a,b,2κξ ) =
∞∑

q=0

(a)q
(b)q

(2κξ )q

q!
, (8)

where the Pochhammer symbol (c)q = �(c + q)/�(c) is
defined in terms of the Gamma function �(z). Terminating the
power series to ensure normalizable solutions, we set a = −n,
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FIG. 2. A plot of the radial part of the wave functions, ψτ (r),
for the spin-polarized m = 0, τ = −1 bound states with n = 0 (solid
line), n = 1 (dashed line), and n = 2 (dotted line). The signs of
the wave functions were chosen so that the curves can be clearly
distinguished.

where n is a negative integer (or zero). Consequently, we obtain
the energy levels

εn,mb2 = 1 −
(

U0b − 2m − τ

1 + 2n + 2|m|
)2

, U0b > 2m + τ, (9)

which is dependent on both quantum numbers, m and n.
Notably, the 2m dependence in Eq. (9) is reminiscent of
the degeneracy of zero-energy states bound by a Coulomb
potential statically screened by a 2D electron gas [61]. The
confined state spectrum is bounded from above by εb2 < 1,
a boundary at which there is an accumulation of highly
oscillatory states with n � 1. The infinite number of energy
levels cease at some lower bound, which is dependent on
the system parameters. The ‘s-state’ (n,m) = (0,0) energy is
given by εb2 = U0b(2τ − U0b), which can be either positive or
negative (or zero). Furthermore, the high vorticity (azimuthal
quantum number) limit (n,m) = (0, ± ∞) unveils a collection
of zero-energy states with εb2 	 0.

All bound state wave functions decay exponentially at
large distances according to the localization length ζ =
b/(1 − εb2)

1/2
. In Fig. 2, we depict the radial part of the

wave functions ψτ (r) for zero angular momentum states
(m = 0) for the lowest quantum numbers n = 0,1,2. The
curves highlight the expected nodal structure and decay. In
general, the corresponding radial probability distributions have
a ringlike appearance, and the most probable radius increases
as n increases.

The condition U0b > 2m + τ appearing in Eq. (9) ensures
that the value of the eigenenergy indeed terminates the special
function Eq. (8), such that the size of b tunes the allowable
quantum states, each with a certain angular momentum and
spin orientation. Namely, the states are rotating vortices
described by a restricted azimuthal quantum number governed
by −∞ < m < m∗

τ , with the upper bound

m∗
τ =

⌈
U0b − τ

2

⌉
(10)

given in terms of the ceiling function. Therefore one is able to
induce successive localization-delocalization transitions in the
system by continuously modulating the field strength, which
ejects one-by-one bound states from the magnetic quantum dot

FIG. 3. A plot of the energy spectra as a function of angular
momentum as given by Eq. (9), for both of the spin orientations
τ = 1 (red circles) and τ = −1 (blue squares). Here U0b = 1/2.

which no longer comply with the criterion for allowed states
[Eq. (10)].

The nature of what states may or may not be trapped in
the magnetic quantum dot gives rise to a mechanism of spin
polarization. For example, for a field strength −1 < U0b � 1,
it follows from Eq. (10) that the m = 0 states are only
supported for the τ = −1 spin orientation and not for the
τ = 1 orientation. We plot in Fig. 3 the energy spectra as a
function of angular momentum showing exactly this situation.
Notably, the low-energy part of the spectrum is spin polarized,
with a large energy gap between the spin-separated eigenstates.
The complete spin polarization of the m = 0 states holds
for all n and so potentially a large number of fermions
per vorticity, raising the possibility of detecting such vortex
states in magnetometery experiments [62]. For higher energies
(larger values of the quantum number n) the influence of the
Zeeman term diminishes.

III. COULOMB PROBLEM WITH A REGULARIZED
MAGNETIC FIELD

It is instructive to check whether the results of Sec. II are
robust against the introduction of a regularization scheme as
r → 0. Accordingly, we use a length scale R and consider a
magnetic field with the spatial dependence

Bz(r) = �

e

1

bR

2 + r/R

(1 + r/R)2
, (11)

as displayed in Fig. 1(b). Now, the wave function must still
behave when r ∼ 0 like ψ ≈ r |m|, and the r → ∞ behavior is
also unchanged: ψ ≈ e±κξ , where κ = (1 − εb2)1/2 and ξ =
r/b. We therefore assume a solution in the form

ψ = c

b
× ξ |m|e−κξw(ξ ), (12)

which yields the rather unwieldy second-order equation

ξw′′ +
(

1 + 2|m|
ξ

− 2κ

)
w′ +

(
�

ξ
+ ϒ

)
w = 0, (13)

where the auxiliary parameter � and function ϒ are given by

� = U0b − κ − 2κ|m|, (14a)

ϒ = 1 − 2τb
R

+ bξ

R

(
2 − τb

R

)
(1 + ξb/R)2

− 2mb

R

1

1 + ξb/R
. (14b)
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Making the natural (and final) switch of the independent
variable ζ = 1 + ξb/R = 1 + r/R, along with the following
substitution

w = ζ
1
2 −

∣∣ R
b
+ τ

2

∣∣
v(ζ ), (15)

brings the more convenient equation

ξv′′ +
(

α + β + 1

ζ
+ γ + 1

ζ

)
v′ +

(
μ

ζ
+ ν

ζ − 1

)
v = 0,

(16)
which is the canonical form of the confluent Heun
equation. In fact, a more useful parametrization is
achieved with the help of the parameter transformation
(μ,ν) → (δ,η) via μ = 1

2 (α − β − γ + αβ − βγ ) − η and
ν = 1

2 (α + β + γ + αγ + βγ ) + δ + η. The reverse map-
ping is δ = μ + ν − α

2 (β + γ + 2) and η = α
2 (β + 1) − μ −

1
2 (β + γ + βγ ). Hence, the parameters appearing in Eq. (13)
take a simple form

α = −2κ
R

b
, β = −

∣∣∣∣2R

b
+ τ

∣∣∣∣, γ = 2|m|, (17a)

δ = U0R + 2
R2

b2
− R

b
(2m + τ ),η = 1

2
+ R

b
(2m + τ ) − 2

R2

b2
.

(17b)

The local (Frobenius) solution built around the regular
singular point ζ = 0, with the radius of convergence |ζ | < 1,
is given by the confluent Heun function

HC(α,β,γ,δ,η,ζ ) =
∞∑

n=0

vn(α,β,γ,δ,η,ζ )ζ n, (18)

where the coefficients vn are given by the three-term recurrence
relation [58]

Anvn = Bnvn−1 + Cnvn−2, (19)

which is subject to the initial conditions v−1 = 0, v0 = 1,
where

An = 1 + β

n
, (20a)

Bn = 1 + 1

n
(β + γ − α − 1)

+ 1

n2

(
η − 1

2
(β + γ − α) − αβ

2
+ βγ

2

)
, (20b)

Cn = α

n2

(
δ

α
+ β + γ

2
+ n − 1

)
. (20c)

To obtain a bound state solution one needs to reduce the
confluent Heun function to a confluent Heun polynomial
of some degree N . Thus we need two successive terms
in the three-term recurrence relation Eq. (19) to disappear,
terminating the infinite power series appearing in Eq. (18).
This requirement results in two termination conditions, which
both need to be satisfied simultaneously. Thus the model is
quasi-exactly-solvable [55] (QES) or explicitly solvable only
in certain circumstances. First, let us impose CN+2 = 0 or

equivalently
δ

α
+ β + γ

2
+ N + 1 = 0; (21)

rearranging for the eigenvalues we obtain

ε
QES
N,mb2 = 1 −

(
1
2U0b + R

b
− m − τ

2

1 + N + |m| − ∣∣R
b

+ τ
2

∣∣
)2

. (22)

This expression is subject to the constraint of Eq. (21) and
therefore the ability to prohibit certain states from forming is
robust against regularization of the magnetic quantum dot.

Secondly, let us force vN+1 = 0, such that it follows from
Eq. (19) that all further terms in the series vanish identically;
the function is now a polynomial of degree N . In practice
this requires solving a polynomial in η. We illustrate this
with the example of the N = 1 state, with U0R = 1. Then
for successively lower m, one obtains the solutions with τ =
1: ε1,0 = −0.436 with b/R = 1.359, ε1,−1 = −0.007 with
b/R = 1.840, and ε1,−2 = −0.000753 with b/R = 1.934. The
corresponding solutions when τ = −1 are: ε1,0 = −1.397
with b/R = 0.868, ε1,−1 = −0.509 with b/R = 0.961, and
ε1,−2 = −0.328 with b/R = 0.981. The existence of these
solution refutes the belief there are no bound states in magnetic
quantum dots. Notably, the case of a spinless particle in a
regularized magnetic field can be treated much more simply,
as is shown in Appendix A.

It should be noted that the solutions presented here and in
Sec. II are also valid in a more general electrostatic potential,
also plotted in Fig. 1(a), given by

U (r) = −U0

r
+ U 2

1

r2
, (23)

which is also important, for example, in systems with
potentials decaying like the inverse square of distance [63]
such as a repulsive antidot confinement potential in a 2D
electron gas [64] and quantum rings [65]. One only needs to
make modifications in some places to the angular momentum
quantum number in the solutions presented here.

IV. THE INVERSE 3/2 MAGNETIC MODEL

Remarkably, one can illustrate with another QES model
a second counter example of electron confinement in an
inhomogeneous magnetic field decaying slower than 1/r2,
with help from the exotic biconfluent Heun functions. In the
model, we choose the field

Bz(r) = �

e

1

a1/2

1

r3/2
, (24)

where a is a length scale marking the range of the field. The
wavefunction should behave at short and long range like ψ ≈
r |m| and ψ ≈ e−√−εr , respectively, with ε < 0. Working in the
variable ξ = (2

√−εr)1/2, after one tries the ansatz

ψ = c

a
× ξ 2|m|e−ξ 2/2w(ξ ), (25)

to peel off the asymptotics one obtains a form of the so-called
biconfluent Heun equation

ξw′′ + (1 + α − 2ξ 2)w′ −
(

δ

2
+ [2 + α − γ ]ξ

)
w = 0.

(26)
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This equation has as a solution the biconfluent Heun func-
tion [58]

w = HB(α,β,γ,δ,ξ ) =
∞∑

n=0

vn(α,β,γ,δ)

(1 + α)n

ξn

n!
, (27)

where the coefficients vn satisfy a three-term recurrence
relation

vn+2 = Anvn+1 + Bnvn, (28)

with v0 = 1 and v1 = 1
2 (δ + β(1 + α)) where

An = (n + 1)β + 1
2 (δ + β(1 + α)), (29a)

Bn = (n + 1)(n + 1 + α)(2n + 2 + α − γ ). (29b)

In our case, the parameters in Eq. (26) are

α = 4|m|, β = 0, γ = 2U0a − 8

(−ε)1/2a
, δ = 4

√
2(4m + τ )

(−ε)1/4a1/2
.

(30)

The biconfluent Heun function reduces to a polynomial when
two conditions are met [58]. Firstly, γ = 2N + 2 + α, where
N is a positive integer, or equivalently

ε
QES
N,ma2 = −

(
U0a − 4

1 + N + 2|m|
)2

, U0a > 4. (31)

Secondly, when Eq. (31) holds the (N + 1)th coefficient in the
series expansion is a polynomial in δ of order N . If δ is a root
of that polynomial, then the (N + 1)th coefficient and indeed
all subsequent coefficients ci are zero. The series has been
truncated and HB(α,β,γ,δ,ξ ) reduces to a biconfluent Heun
polynomial HB = 1 + c1ξ + c2ξ

2 + ... of degree N .
In our case here, we need to solve N th-order polynomial

equations for the remaining parameter εa2, which allows us
to find closed form solutions in certain special cases. For
example, let us consider the m = 1 energy levels. When N =
1, upon solving the resulting quadratic equation in δ and using
Eq. (31) one finds the energies ε1,1a

2 = −400 with U0a =
84 (τ = +1) and ε1,1a

2 = −51.84 with U0a = 32.80 (τ =
−1). Similarly, for N = 2 the closed form solutions arise for
ε2,1a

2 = −20.66 with U0a = 26.73 (τ = +1) and ε2,1a
2 =

−2.68 with U0a = 12.18 (τ = −1). For increasing N , a
pattern arises of (N − 1) closed form solutions for each τ .
Thus we have found one more counterexample to the statement
confinement in magnetic quantum dots is impossible, and in
doing so have shown a toy model for the Pauli equation.

In fact, the limiting case of m = 0 can be treated exactly
when the Zeeman term is neglected (τ = 0) with the aid of a
beautiful identity linking the biconfluent Heun and Kummer
functions [58]

HB(α,β,γ,δ,ξ ) = F

(
1

2
+ α

4
− γ

4
,1 + α

2
,ξ 2

)
, (32)

β = δ = 0, α �= −n, n = 0,1....

Now, after terminating the infinite series of the Kummer
function, one readily obtains the eigenspectra

εn,0a
2 = −

(
U0a − 4

1 + 2n

)2

, U0a > 4, (33)

which again explicitly shows the characteristic feature of a
threshold value of U0a that must be obtained before bound
states may form. A notable distinction, compared to the s-
state solution Eq. (9) for the 1/r decaying field, is that the
eigenvalues are always negative.

V. ELECTRON IN A MAGNETIC QUANTUM DOT

We now turn to a regularized inhomogeneous magnetic field
for a free electron, which allows us to probe all states exactly,
in the form of a magnetic dot

Bz(r) = �

e

1

b

{
R−1, r � R, (region I)
r−1, r > R. (region II)

(34)

as displayed in Fig. 1(b). In region I, one can write down the
solution in a constant magnetic field [66] as follows:

ψI = cI

b
ξ

|m|/2
I e−ξI /2F (aI ,bI ,ξI ),

aI = 1

2
(1 + |m| + m − εbR + τ ), bI = 1 + |m|, (35)

where the radial coordinate has been eliminated via ξI =
r2/(2bR) and cI is a normalization constant. In region II,
guided by the solution in Sec. II, one finds the solution

ψII = cII

b
ξ

|m|
II e−ξII /2U (aII ,bII ,ξII ),

aII = 1

2
+ 2m + τ

2κ
+ |m|, bII = 1 + 2|m|, (36)

in the variable ξII = 2κr/b. The Tricomi function, the second
linearly independent solution to Kummer’s differential equa-
tion, is defined by [60]

U (a,b,ξ ) = �(1 − b)

�(a − b + 1)
F (a,b,ξ )

+ �(b − 1)

�(a)
ξ 1−bF (a − b + 1,2 − b,ξ ), (37)

which has the asymptotic behavior U (a,b,ξ ) ∼ ξ−a as ξ →
∞. We discard Kummer’s function as a physical solution due
to its large ξ expansion F (a,b,ξ ) ∼ ξa−beξ . Imposing the
boundary conditions of continuity of the wave function and its
first spatial derivative at the boundary R, yields the constraint

cII

cI

=
(

b

8κ2R

) |m|
2

e
R
b (κ− 1

4 ) F
(
aI ,bI ,

R
2b

)
U

(
aII ,bII ,

2κR
b

) , (38)

and the following transcendental equation for determination
of the eigenvalues

aI

bI

F
(
aI + 1,bI + 1, R

2b

)
F

(
aI ,bI ,

R
2b

) + 2κaII

U
(
aII + 1,bII + 1, 2κR

b

)
U

(
aII ,bII ,

2κR
b

)
+κ − 1

2
= 0. (39)
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This rich equation (39) recovers the expected results in the
limit of constant magnetic field, Bz(r) = �/ebR, and the
appropriate inhomogeneous magnetic field, Bz(r) = �/ebr ,
respectively:

εn,mb2 = b

R
(1 + |m| + m + 2n + τ ),R/b � 1, (40a)

εn,mb2 = 1 −
(

2m + τ

1 + 2n + 2|m|
)2

,2m + τ < 0,R/b  1.

(40b)

One notices how a modulation of the magnetic field effects
the key dimensionless parameter R/b, such that in strong fields
R/b  1 one can exclude all states rotating with a positive
angular momentum due to the requirement 2m + τ < 0. In
weak fields R/b � 1 one recovers the celebrated Landau
levels. States with different electron spin orientations are
not treated symmetrically, as is seen from the condition in
Eq. (40b). This implies magnetic vortex states trapped in
magnetic quantum dots as a potential system to observe
polarization of the electron species, since the confinement
of a state with a certain spin orientation τ does not imply
the partner state (with the same quantum numbers but with
opposite spin orientation −τ ) is also confined. Additionally,
as varying the magnetic field strength leads to successive
vortex states undergoing localization-delocalization transi-
tions as confined states are lost into the continuum, the
setup is a plausible candidate for the basis of a magnetic
storage device. In Appendix B we derive results for electrons
in a magnetic quantum ring, which leads to analogous
conclusions.

We should also mention that the addition of a magnetic flux
tube to the problem leads to an extra phase factor in the wave
function, accounted for by the replacement m → m̃ = m + f

(where f is the number of flux quanta) such that one can now
modulate this key physical parameter. The freedom of m̃ to
take values away from purely integers also means that this
setup requires a proper treatment including the von Neumann
theory of self-adjoint extensions [67].

VI. CONCLUSION

While it is true that confinement is not possible for 2D
massive electrons in magnetic quantum dots defined by short-
range magnetic fields, this is not the case for slowly-decaying
magnetic fields. We have studied the counter examples of
fields decaying like 1/r or 1/r3/2, showing how the electrons
can be trapped in quantized energy levels depending on two
quantum numbers, the spin orientation and two parameters of
the field, defining its strength and spatial extent. Interestingly,
manipulation of the magnetic field strength allows one to
exclude certain magnetic vortex states from forming, raising
the possibility of both observing successive localization-
delocalization transitions and spin polarization effects. We
hope that this proposal stimulates further experimental work
on trapping electrons with inhomogeneous magnetic fields in
2D systems.
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APPENDIX A: PARTICLE IN A REGULARIZED
MAGNETIC QUANTUM DOT

The case of a spinless particle (or arguably a particle in a
fixed eigenstate of spin [68,69]) follows by taking τ = 0 in the
main part of this paper. It also allows for an exact treatment of
a particle in a regularized magnetic quantum ring, defined by

Bz(r) = �

e

1

b

1√
R2 + r2

. (A1)

Now the wave function must behave when r ∼ 0 like ψ ≈
ξ±

√
|m|2+R2/b2

, with ξ = r/b. Thus, with comparison to Sec. II,
we notice that the effect of the regularization is to ensure
that all eigenfunctions, including the s-state with m = 0,
have a ringlike structure. Remarkably, one can find the s-state
eigensolution analytically via a formal analogy with Eq. (4),
leading to the (unnormalized) solution

ψ = ξ
R
b e−κξF

(
−n,1 + 2

R

b
,2κξ

)
, n = 0,1,2,... (A2)

with the eigenenergy spectrum

εn,0b
2 = 1 −

(
U0b

1 + 2n + 2R/b

)2

. (A3)

Of course the spectrum reduces in the limit R/b  1, where
the cutoff is of negligible importance, to the s-state solution of
Eq. (9). Crucially, this result shows the analysis carried out in
Sec. III is not misleading, in spite of a divergence in the field
at the origin, and can be safely used as a toy model with small
cutoffs R/b  1.

Neglecting any electrostatic potential (U0 = 0), the s-state
eigensolution Eq. (A2) and Eq. (A3) do not give us much
useful information. In this limiting case, the wave function
instead takes the form of a modified Bessel function of the
second kind

ψ = KR/b(κξ ), (A4)

in order to decay asymptotically at long range, which it does
like ψ ∼ (ξκ)−1/2e−ξκ . The quantization of the m = 0 energy
level is removed; all that is required is the inequality εb2 < 1
holds. However, the requirement of a square integrable wave
function places the additional constraint R/b < 1, due to the
singular nature of the wave function at short range

ψ ∼ (ξκ)−R/b, ξ → 0. (A5)
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Similar singular wave functions are well known in 2D, both in
anyonic physics [70] and in the scattering of Dirac fermions
by cosmic strings [71,72]. The complete removal of a cutoff
R = 0 leads to a logarithmic singularity at the origin and as
such forbids the m = 0 state.

One may gain further insight into this problem via an
approximate analytical solution of the Schrödinger equation
with Eq. (A1) and now m �= 0. Introducing the replacement
(1 + r2/R2)1/2 ≈ (1 + r/R), to ensure the correct behavior
both at r = 0 and r � R for the term which appears as the
crossed term in Eq. (2), leads to the approximate eigenvalue
expression

εapp
n,mb2 	 1 −

(
U0b − 2m

1 + 2n + 2|m + R/b|
)2

, U0b > 2m,

(A6)

which is valid for strong fields R/b  1. One notices that
the effect of the cutoff is to increase the magnitude of the
energy, compared to Eq. (9). A free spinless particle again
exhibits the feature of removing most states with positive
angular momenta, as found previously for electrons.

APPENDIX B: ELECTRON IN A MAGNETIC
QUANTUM RING

For completeness, we consider an analogous situation to
Sec. V, but now with a magnetic ring defined by

Bz(r) = �

e

1

br
�(r − R), (B1)

where �(x) is the Heaviside step function. One can write down
the solution using our knowledge from Sec. V. Now for r � R

(region I ) the wave function simply becomes a Bessel function
of the first kind ψI = cI

b
J|m|(ε1/2r), while it is unchanged from

Eq. (36) when r > R (region II ). This analysis leads to a
transcendental equation to be solved for bound states

2aII

U
(
aII + 1,bII + 1, 2κR

b

)
U

(
aII ,bII ,

2κR
b

) − ε1/2b

κ

J|m|+1(ε1/2R)

J|m|(ε1/2R)
+ 1 = 0.

(B2)

This expression reduces in the limit of R/b  1 to the problem
of Sec. II, with the spectrum of Eq. (40b). Therefore, the regime
of R/b  1 again displays the criticality on the quantum
number m.
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