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Two-phonon scattering in graphene in the quantum Hall regime

A. M. Alexeev,1 R. R. Hartmann,2 and M. E. Portnoi1,3,*

1School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
2De La Salle University-Manila, 2401 Taft Avenue, 1004 Manila, Philippines

3International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
(Received 28 April 2015; revised manuscript received 31 October 2015; published 30 November 2015)

One of the most distinctive features of graphene is its huge inter-Landau-level splitting in experimentally
attainable magnetic fields which results in the room-temperature quantum Hall effect. In this paper we calculate
the longitudinal conductivity induced by two-phonon scattering in graphene in a quantizing magnetic field at
elevated temperatures. It is concluded that the purely phonon-induced scattering, negligible for conventional
semiconductor heterostructures under quantum Hall conditions, becomes comparable to the disorder-induced
contribution to the dissipative conductivity of graphene in the quantum Hall regime.
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I. INTRODUCTION

The quantum Hall effect, discovered in 1980 by Klaus
von Klitzing et al. [1], allows one to determine the quantum
resistance standard in terms of the electron charge and Plank’s
constant with spectacular accuracy. However, the level of
precision necessary for metrology applications (a few parts per
billion) for conventional quasi-two-dimensional semiconduc-
tor systems requires the use of ultralow temperatures and high
magnetic fields [2,3]. The discovery of graphene [4] in 2004
led to a revival of interest in quantum Hall effect physics [5,6].
The energy of Landau levels (LLs) in graphene is given by

EN = ±(�vF/lB)
√

2N, (1)

where vF = 1 × 106m/s is the Fermi velocity, lB = √
�/eB

is the magnetic length, B is the magnitude of the applied
magnetic field, N is the LL number, and the “±” signs
correspond to the electrons and holes, respectively [7–9]. For
B = 10 T the separation between the zero and the first LL in
graphene is �E01/kB ≈ 1300 K (in comparison, �E/kB ≈
200K in conventional quasi-two-dimensional semiconductor
systems). Therefore, the quantum Hall effect in graphene
can be observed even at room temperatures in experimentally
attainable magnetic fields. Indeed, the room-temperature quan-
tum Hall effect in graphene was first observed in 2007 [10];
however, extremely high magnetic fields (up to 45 T) were
needed.

It has been understood since the 1930s that the longitu-
dinal conductivity of metals in a quantizing magnetic field
increases with increasing electron scattering [11]. To develop
a graphene-based quantum Hall standard of resistance [12–15],
which would work at elevated temperatures and in moderate
magnetic fields, it is essential to examine the contributions
from different scattering processes to the longitudinal conduc-
tivity σxx in the quantum Hall regime (QHR), T � �E01/kB,
as σxx provides the major correction to the quantized value of
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the Hall resistance. In conventional semiconductor systems the
quantum Hall effect is observed at liquid helium temperatures
only, and the value of σxx is governed by scattering on
disorder. In the QHR, σxx depends exponentially on the energy
separation between the Fermi level and the nearest LL. The lon-
gitudinal conductivity prefactor has a theoretically predicted
value of e2/h in the presence of short-range disorder and 2e2/h

in the presence of long-range disorder [16,17]. It was shown
that the contribution from phonon scattering is negligibly
small. The exceptions are exotic cases such as magnetoroton
dissociation, in which the whole effect arises from scattering
on phonons [18], or an enhancement of phonon-induced
scattering near the intersection of two LLs corresponding
to different size-quantization subbands [19–21]. However,
as we show in this paper, the phonon-scattering mechanism
dominates in the high-temperature QHR in graphene, since at
T > TlB = (�s/ lB)/kB (where s = 2 × 104 m/s is the sound
velocity in graphene [22,23]) the energy of an acoustic phonon
with a wave vector comparable to the inverse magnetic length
is much smaller than the temperature; therefore, the number
of such phonons increases drastically.

In this paper we restrict our consideration to electron
scattering induced by the interaction with intrinsic in-plane
phonons only, neglecting the effects of disorder as well
as electron-electron interactions. Our calculations result in
the lower estimate of the longitudinal conductivity σxx in
graphene in the QHR, as we do not study electron interactions
with various other types of phonons such as out-of-plane
flexural phonons, which are present in suspended samples
[24,25], or bulk acoustic phonons in a substrate, which
interact with electrons in graphene on polar substrates such
as boron nitride [26] or silicon carbide via piezoelectric
coupling [27,28].

II. THEORETICAL FORMALISM: TWO-PHONON
SCATTERING WITHIN ONE LANDAU LEVEL

The wave function of a charged carrier (electron or hole)
in graphene subjected to a magnetic field B normal to the
graphene plane is given in the Landau gauge, A = (0,Bx,0),
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by the following expression [7–9]:

�N,ky
= CN√

2NN !
√

πlB
exp

[
− (x − x0)2

2l2
B

]

×
[

HN [(x − x0)/lB]

±√
2NHN−1[(x − x0)/lB]

]
exp(ikyy)√

Ly

, (2)

where C0 = 1 and CN �=0 = 1/
√

2, x0 = l2
Bky is the guiding

center coordinate, ky is the electron wave vector y component,
HN are the Hermite polynomials, Lx and Ly are the graphene
sample dimensions, the “±” sign corresponds to electrons and
holes, and the spin and valley indices are omitted. Here the z

axis has been chosen in the direction of the applied magnetic
field and the x axis and y axis are in the graphene plane.
The wave function given by Eq. (2) is defined for one Dirac
point only and its two components correspond to graphene’s
two sublattices. In what follows all results will be obtained
for electrons only. Calculations for the nonequivalent Dirac
point and holes can be easily repeated in a similar fashion.
From here on we will omit the “±” sign in order to simplify
notation. We account for the valley and spin degeneracy by
multiplying the final result for σxx by the factor of 4 at the
final stage of calculations.

Electron scattering on phonons leads to a change in the
ky component of the electron wave vector, which results
in a change to the electron guiding center coordinate x0.
Electron transitions between LLs due to one-phonon scat-
tering are suppressed due to the large energy gaps be-
tween LLs in graphene in the QHR. Indeed, the number
of phonons with the energy required for such transitions
is nq � exp (−�EN1N2/kBT ) (�EN1N2 is the energy gap
between two different LLs in graphene), which is very small
in the QHR. Inter-LL scattering on acoustic phonons has
an additional exponentially strong suppression in the matrix
element of transition which is markedly different from the case
of conventional semiconductor systems as discussed in the
Appendix. It is also evident that in the QHR only scattering on
acoustic phonons can provide a noticeable contribution to the
longitudinal conductivity σxx . The optical phonon energy in
graphene corresponds to the temperature range 1800–2300 K
[29,30] which leads to very small optical phonon occupation
numbers at room temperatures and below. In this work, we
are interested in phonon-induced equilibrium longitudinal
conductivity, whereas magnetophonon resonance associated
with optical phonons has been studied in Refs. [31–33].
One-phonon scattering within the same LL is ineffective
because of the small width of the LLs, which can be arguably
achieved in pristine graphene samples. Interestingly, even in
heavily disordered samples the broadening of LLs was found to
shrink in several particular cases [34,35]. For our calculations
we assume an infinitely narrow band of delocalized states in
the middle of each LL with a vanishing density of states in
between LLs. In this limit one-phonon scattering within one LL
is forbidden by energy and momentum conservation. The next
order process to consider is two-phonon scattering through
virtual states with no change in the electron initial and final
LL numbers but with the change in its in-plane momentum (or
the guiding center coordinate). We calculate the longitudinal

conductivity σxx at the N th LL due to two-phonon scattering
using the generalized form of the Einstein relation [21,36,37]:

σxx = e2

2πl2
B

νN (1 − νN )
D

kBT
, (3)

D = l4
B

2

∑
k′
y

Wky→k′
y
(k′

y − ky)2, (4)

where νN = {exp [(EN − EF)/kBT ] + 1}−1 is the LL filling
factor, EN is the LL energy defined by Eq. (1), EF is the Fermi
energy, ky and k′

y are the y components of the electron wave
vector before and after scattering, D is the diffusion coefficient,
and Wky→k′

y
is the probability of scattering.

Two-phonon scattering in graphene in the QHR is possible
through two different virtual intermediate states: a phonon
with wave vector q+ is first emitted or a phonon with wave
vector q− is first absorbed. Transitions changing the electron
LL number in the intermediate states are strongly suppressed
due to small values of corresponding matrix elements and the
presence of large denominators in the expression for Wky→k′

y

(see Appendix). Therefore, in what follows we consider only
transitions with no change in the electron LL number. Then,
the probability of two-phonon scattering is given by Fermi’s
golden rule with the matrix element

Mky,k′
y
(q−,q+) = nq− (nq+ + 1)

∑
k′′
y

( 〈k′
y |V̂q+|k′′

y 〉〈k′′
y |V̂q−|ky〉

��q−

− 〈k′
y |V̂q−|k′′

y 〉〈k′′
y |V̂q+|ky〉

��q+

)
, (5)

where nq = [exp (��q/kBT ) − 1]−1 is the phonon occupation
number, �q = sq is the acoustic phonon frequency, and V̂q is
the electron-phonon coupling operator.

Operators describing electron scattering on intrinsic longi-
tudinal (LA) and transverse (TA) acoustic phonons in graphene
are [38,39]

V̂ LA
q = Uqq exp (iqr)

(
igd ghe

i2ϕ

−ghe
−i2ϕ igd

)
, (6)

V̂ TA
q = Uqq exp (iqr)

(
0 ighe

i2ϕ

ighe
−i2ϕ 0

)
, (7)

where Uq = (LxLy)−1/2(�/2ρ�q)1/2, ρ is the graphene two-
dimensional mass density, r is the position vector in the
graphene plane, and ϕ is the angle between the phonon wave
vector q and the x axis. The diagonal matrix elements in
Eqs. (6) and (7) describe electron coupling to the phonon-
created deformation potential, and the off-diagonal matrix
elements originate from the phonon-induced bond-length
modulations, which effect hopping amplitudes between two
neighboring sites. The corresponding coupling constants were
estimated as gd ≈ 20–30 eV and gh ≈ 1.5–3.0 eV [22,23,38–
42]. Note that the deformation potential couples electrons with
LA phonons only. Furthermore, since the second component of
the electron wave function defined by Eq. (2) vanishes for the
zero LL, electrons in this LL do not interact with TA phonons.
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Substituting the electron-phonon scattering operators given by Eqs. (6) and (7) into Eq. (5) yields

M
μ,γ

ky,k′
y
(q−,q+) = G2

μ,γ Uq−q−nq−Uq+q+(nq+ + 1)

⎛
⎝∑

k′′
y

M
μ,γ

ky ,k′′
y
(q−)Mμ,γ

k′′
y ,k′

y
(q+)

��q−
−

∑
k′′
y

M
μ,γ

ky ,k′′
y
(q+)Mμ,γ

k′′
y ,k′

y
(q−)

��q+

⎞
⎠, (8)

where μ = {LA,TA}, γ = {d,h} are the indices introduced to separate the contributions to the longitudinal conductivity σxx from
LA and TA phonons and from the two different scattering mechanisms discussed above, Gμ,γ is the generalized electron-phonon
coupling constant with the values GLA,d = gd , GLA,h = gh, GTA,d = 0, GTA,h = gh, and the matrix elements M

μ,γ

ky,k′
y
(q) are

given by

M
LA,d
ky ,k′

y
(q) = i

∫
�

†
N,k′

y
(r) exp(±iqr)I�N,ky

(r)dr = iC2
N exp(±β − α)

[
L0

N (α) + L0
N−1(α)

]
δk′

y ,ky±qy
, (9)

M
LA,h
ky ,k′

y
(q) =

∫
�

†
N,k′

y
(r) exp(±iqr)�LA�N,ky

(r)dr

= − C2
NN−1/2lB[qx cos 2ϕ ± (ky − k′

y) sin 2ϕ] exp(±β − α)L1
N−1(α)δk′

y ,ky±qy
, (10)

M
TA,h
ky ,k′

y
(q) =

∫
�

†
N,k′

y
(r) exp(±iqr)�TA�N,ky

(r)dr

= − C2
NN−1/2lB[qx sin 2ϕ ∓ (ky − k′

y) cos 2ϕ] exp(±β − α)L1
N−1(α)δk′

y ,ky±qy
. (11)

In Eqs. (9)–(11), α = (l2
B/4)[(k′

y − ky)2 + q2
x ], β = i(l2

Bqx/2)(k′
y + ky), N �= 0, the “±” sign refers to emitted and absorbed

phonons, L0
N and L1

N are the Laguerre polynomials, I is the 2 × 2 identity matrix, and �LA and �TA are given by

�LA =
(

0 ei2ϕ

−e−i2ϕ 0

)
, �TA =

(
0 iei2ϕ

ie−i2ϕ 0

)
. (12)

Equation (9) is also valid for the zero LL when substituting L0
N−1 = 0 and L1

N−1 = 0. Note the N−1/2 factor in Eqs. (10) and
(11) which suppresses the off-diagonal contribution to σxx in higher LLs. Summation over all possible values of k′′

y in Eq. (8)
results in the following expressions for two-phonon scattering matrix elements:∣∣MLA,d

ky ,k′
y
(q−,q+)

∣∣2 = C8
N (gdUq)4[q/(�s)]2

[
L0

N

(
l2
Bq2/2

) + L0
N−1

(
l2
Bq2/2

)]4

× exp(−l2
Bq2) sin2

[
l2
B(q+

y q−
x − q−

y q+
x )/2

]
δk′

y ,ky+q−
y −q+

y
, (13)

∣∣MLA,h
ky ,k′

y
(q−,q+)

∣∣2 = C8
N (ghUq)4[q/(�s)]2N−2

[
L1

N−1

(
l2
Bq2/2

)]4
exp

(−l2
Bq2

)
l4
B(q+

x sin 2ϕ+ + q+
y cos 2ϕ+)2

× (q−
x sin 2ϕ− + q−

y cos 2ϕ−)2 sin2
[
l2
B(q+

y q−
x − q−

y q+
x )/2

]
δk′

y ,ky+q−
y −q+

y
, (14)

∣∣MTA,h
ky ,k′

y
(q−,q+)

∣∣2 = C8
N (ghUq)4[q/(�s)]2N−2

[
L1

N−1

(
l2
Bq2/2

)]4
exp

( − l2
Bq2

)
l4
B(q+

x cos 2ϕ+ − q+
y sin 2ϕ+)2

× (q−
x cos 2ϕ− − q−

y sin 2ϕ−)2 sin2
[
l2
B(q+

y q−
x − q−

y q+
x )/2

]
δk′

y ,ky+q−
y −q+

y
. (15)

Substituting the calculated probability of the two-phonon scattering Wky→k′
y

into Eq. (4) and performing summation over k′
y

as well as integration over all possible values of q+ and q− yield the following result for the longitudinal conductivity:

σxx = (
σ̃ LA,d

xx + σ̃ LA,h
xx + σ̃ TA,h

xx

)
νN (1 − νN ),

where

σ̃ LA,d
xx = (e2/h)

(
C8

N/2π
)(

g4
d lB/ρ2s4

)(
TlB /T

) ∫ ∞

0
ηq(ηq + 1)q4 exp

(−l2
Bq2

)[
1−J0

(
l2
Bq2

)][
L0

N

(
l2
Bq2/2

)+L0
N−1

(
l2
Bq2/2

)]4
dq,

(16)

σ̃ LA/TA,h
xx = (e2/h)N−2

(
C8

N/2π
)(

g4
hlB/ρ2s4

)
(TlB /T )

∫ ∞

0
ηq(ηq + 1)q8 exp

( − l2
Bq2

)[
1 − J0

(
l2
Bq2

)][
L1

N−1

(
l2
Bq2/2

)]4
dq.

(17)

Here J0 is the Bessel function of the first kind. The expressions for σ
μ,γ
xx were multiplied by a factor of 4 to account for the

valley and spin degeneracy. From Eqs. (16) and (17) it is evident that σ̃ LA,d
xx  σ̃

LA/TA,h
xx due to the relatively small value of gh

compared to gd [22,23,38–42] and the small N−2 factor contained in Eq. (17).
There are two distinctive temperature limits. In the low-temperature limit, T � TlB , the main value of the integrals in Eqs. (16)

and (17) is formed by q � kBT /�s and qlB can be considered as a small parameter. Expanding the integrand into power series
in qlB and taking into account only the lowest power term yields the following expression for σ

μ,γ
xx in the low-temperature
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limit:

σ̃ LA,d
xx � (e2/h)(23π7/15)

[
g4

d/
(
l2
Bρ2

�
2s6)](T/TlB )8, (18)

σ̃ LA/TA,h
xx � (e2/h)

[
AN−1

0 /N2](5528π11/1365)
[
g4

h/
(
l2
Bρ2

�
2s6)](T/TlB )12. (19)

In Eq. (19) the coefficients AN−1
0 are defined by [L1

N−1(x/2)]4 = ∑4N−4
j=0 AN−1

j xj , where N � 1. For the zeroth LL, σ̃ LA/TA,h
xx = 0.

Note that σ̃ LA,d
xx in Eq. (18) does not depend on the LL number. The temperature dependencies given by Eqs. (18) and (19)

are different from the case of conventional semiconductor heterostructures for both two-phonon scattering [21,36,37] and
phonon-assisted hopping conductivity [16,17]. In Eq. (18), which corresponds to the deformation potential scattering mechanism,
the lower power in the temperature dependence of mobility compared to that obtained in Refs. [21,36,37] is due to phonons in
graphene being two dimensional. As was mentioned above, the contribution to longitudinal conductivity at higher LLs given by
Eq. (19) is a distinctive feature of graphene without analogy in semiconductor systems.

In the more interesting high-temperature limit, T > TlB , the main value of the integrals in Eqs. (16) and (17) is formed by
q � 1/lB , and �sq/kBT can be considered as a small parameter. By expanding the integrand into power series in �sq/kBT and
taking into account only the lowest power term we obtain the following result for σ

μ,γ
xx in the high-temperature limit:

σ̃ LA,d
xx = (e2/h)

(
C8

N�d
N/22π

)(
g4

d/ l2
Bρ2

�
2s6

)(
T/TlB

)
, (20)

where

�d
N =

4N∑
j=0

BN
j �

(
j + 3

2

)[
1 − 2F1

(
2j + 3

4
;

2j + 5

4
; 1; −1

)]
, (21)

and

σ̃ LA/TA,h
xx = (e2/h)N−2[�h

N−1/(26π )
][

g4
h/

(
l2
Bρ2

�
2s6)](T/TlB

)
, (22)

where

�h
N−1 =

4N−4∑
j=0

AN−1
j �

(
j + 7

2

)[
1 − 2F1

(
2j + 7

4
;

2j + 9

4
; 1; −1

)]
. (23)

In Eqs. (21)–(23), � is the gamma function and 2F1 is the hypergeometric function. In Eq. (22), N �= 0, since in the zeroth LL
σ̃

LA/TA,h
xx = 0. The coefficients AN−1

j are the same as in Eq. (19) and the coefficients BN
j are defined by [L0

N (x/2) + L0
N−1(x/2)]4 =∑4N

j=0 BN
j xj .

III. DISCUSSION AND CONCLUSION

In Fig. 1 we plot σ̃xx = σ̃ LA,d
xx + σ̃ LA,h

xx + σ̃ TA,h
xx obtained by

numerical integration of Eqs. (16) and (17) from 0 to 300 K for
B = 10 T (TlB ≈ 22 K). It can be seen from Fig. 1(a) that for
T  TlB , σ̃xx linearly increases with temperature in line with
Eqs. (20)–(22). From Fig. 1(b) one can see the change of the
σ̃xx temperature dependence from the high power to the linear
law occurring around T = TlB . Substituting the numerical
values of all the constants into Eqs. (20) and (22) results
in the following simplified expression for σ̃xx at elevated
temperatures:

σ̃xx ≈ σ̃N (T/300 K)(B/10 T)1/2, (24)

where σ̃N has the following values for the six lowest LLs: σ̃0 =
0.65e2/h, σ̃1 = 0.06e2/h, σ̃2 = 0.20e2/h, σ̃3 = 0.19e2/h,
σ̃4 = 0.15e2/h, σ̃5 = 0.14e2/h. Here we used the unscreened
value of the deformation potential, which is arguably appro-
priate in the strong magnetic field as the electron motion is
quantized and the screening is suppressed.

There is a natural question of the applicability of the lowest
allowed (in our case second) order of perturbation theory
in electron-phonon interaction at elevated temperatures. This
problem was studied in detail in Ref. [37] for conventional
semiconductor quantum wells and bulk acoustic phonon

scattering. To compare our results with the analysis provided
in Ref. [37] it is necessary to express them in terms of the
diffusion coefficient

D = σ̃xx

2πl2
B

e2
kBT = σxx

e2/h

(
T

TlB

)
slB.

In Ref. [37] the diffusion coefficient for T > TlB in the
lowest (second) order of perturbation theory is written as D =
(αT/TlB )2slB . Thus, there is a simple connection between the
dimensionless electron-phonon interaction constant α and our
dimensionless constants σ̃N/(e2/h). Namely,

α = 0.27

(
σ̃N

4e2/h

)1/2(
B

10 T

)1/2

.

According to Ref. [37] higher orders of perturbation theory
can be neglected for T < Tc = TlB /α. Unlike the case of
conventional semiconductors, for which α ∝ l−2

B , for graphene
α ∝ l−1

B ; therefore, the temperature Tc defining the validity of
perturbation theory becomes independent of magnetic field.
For the zero Landau level and for the parameters used in our
calculations, Tc ≈ 220 K. Above this temperature the phonon-
induced mobility is expected to change from linear to sublinear
temperature dependence and eventually to saturate. For higher
Landau levels the perturbation theory cut-off temperature Tc
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FIG. 1. (Color online) (a) The longitudinal conductivity prefactor σ̃xx as a function of temperature for B = 10T. (b) Expanded view in the
0–30 K temperature range.

well exceeds 300 K and the lowest order perturbation analysis
is fully valid for ambient conditions.

In conclusion, we obtained the value of the longitudinal
conductivity in graphene in the quantum Hall regime due
to two-phonon scattering at elevated temperatures which is
comparable to the disorder-induced longitudinal magneto-
conductivity in conventional semiconductor heterostructures
[16,17,43]. The predicted distinctive temperature and mag-
netic field dependence of the phonon scattering contribution
to the preexponential factor in σxx given by Eq. (24) can be
easily separated from the temperature- and field-independent
contribution caused by disorder when analyzing experimen-
tal data. This should allow the parameters of electron-
phonon interaction in graphene to be extracted with enhanced
accuracy.
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APPENDIX: ELECTRON-PHONON SCATTERING
INVOLVING DIFFERENT LANDAU LEVELS

The probability of two-phonon scattering through a virtual
intermediate state is calculated using Fermi’s golden rule as
given below:

Wky→k′
y
= 2π

�

∣∣MNi,Nf

ky ,k′
y

(q−,q+)
∣∣2

nq− (nq+ + 1)�(Ei,Ef ),

where

M
Ni,Nf

ky ,k′
y

(q−,q+)

=
∑
Nm,k′′

y

〈Nf ,k′
y |V̂q+|k′′

y ,Nm〉〈Nm,k′′
y |V̂q−|ky,Ni〉

Ei − Em + ��q−

+
∑
Nm,k′′

y

〈Nf ,k′
y |V̂q−|k′′

y ,Nm〉〈Nmk′′
y |V̂q+|ky,Ni〉

Ei − Em − ��q+
, (A1)

and

�(Ei,Ef ) = δ(Ei − Ef − ��q+ + ��q− ).

Here Ei , Em, and Ef are the energies of the electron LLs in the
initial, intermediate, and final states. Clearly, the transitions
changing the electron LL number in the intermediate states
are suppressed compared to the transitions conserving the LL
number due to the presence of large denominators in Eq. (A1).

Notably, single-phonon scattering on acoustic phonons with
a change in the LL number is also suppressed because of the
very small value of the corresponding matrix element

〈Nf |V̂ LA/TA
q |Ni〉 ∼ exp

(−l2
Bq2/4

)
.

Due to energy conservation, q =
√

2vF
slB

(
√

Nf − √
Ni), which

results in the following estimate:

〈Nf |V̂ LA/TA
q |Ni〉 ∼ exp

[
− v2

F

2s2
(
√

Nf −
√

Ni)
2

]
. (A2)

Interestingly, unlike the case of a conventional quasi-two-
dimensional semiconductor system [44,45], the exponential
factor in Eq. (A2) does not depend on the magnetic field. In-
stead, it has a nontrivial dependence on the difference between
the LL numbers of the two involved levels and becomes nonva-
nishing for very high adjacent LLs. However, these high levels
are not relevant for the high-temperature quantum Hall effect,
which is the subject of our interest; whereas, for Ni = 0 and
Nf = 1, 〈Nf |V̂ LA/TA

q |Ni〉 ∼ exp(−v2
F/2s2) ≈ exp(−502/2)

leading to a complete suppression of inter-LL transitions.
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