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Levinson’s theorem and scattering phase-shift contributions to the partition function
of interacting gases in two dimensions

M. E. Portnoi* and I. Galbraith
Physics Department, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

~Received 19 February 1998!

We consider scattering state contributions to the partition function of a two-dimensional~2D! plasma in
addition to the bound-state sum. A partition function continuity requirement is used to provide a statistical
mechanical heuristic proof of Levinson’s theorem in two dimensions. We show that a proper account of
scattering eliminates singularities in thermodynamic properties of the nonideal 2D gas caused by the emer-
gence of additional bound states as the strength of an attractive potential is increased. The bound-state contri-
bution to the partition function of the 2D gas, with a weak short-range attraction between its particles, is found
to vanish logarithmically as the binding energy decreases. A consistent treatment of bound and scattering states
in a screened Coulomb potential allowed us to calculate the quantum-mechanical second virial coefficient of
the dilute 2D electron-hole plasma and to establish the difference between the nearly ideal electron-hole gas in
GaAs and the strongly correlated exciton/free-carrier plasma in wide-gap semiconductors such as ZnSe or
GaN. @S0163-1829~98!09531-9#
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I. INTRODUCTION

Two-dimensional~2D! systems play a central role in con
temporary condensed matter physics. Novel phenomena
as the quantum Hall effect1 observed when a 2D electron ga
at low temperature is subjected to a strong magnetic field
well as practical developments based on quasi-2D syste
e.g., high-mobility field-effect transistors2 or semiconductor
quantum-well lasers,3 have brought significant technologic
advances. Such devices are based on the quasiequilib
response of the internal electron or electron-hole plasma
an external stimulation. Hence it is essential to underst
the fundamental quantum-statistical properties of such t
dimensional interacting plasmas at finite temperatures.

One of the well-known differences between 2D and
nonrelativistic quantum mechanics is the presence of at l
one bound state for any symmetric attractive potential in t
dimensions. This bound state, with binding energyEb ,
brings a nonvanishing contribution of exp(Eb /kBT) to the
two-body part of the partition function even if the interactio
is weak and the state is very shallow. For a dilute gas
contribution introduces a deviation from the ideal gas l
that is larger than the correction due to the Fermi or B
statistics of the particles. However, it is clear that 2D ga
with a vanishing interparticle interaction strength should
well described by free Fermi or Bose gas models. This c
tradiction will be resolved in the present paper. A relat
question is what happens to the partition function when
ditional bound states appear with increasing strength of
teraction between the particles. In the 3D case the answ
this question is based on a careful consideration of state
the continuum, which are modified by the interaction, i.
taking scattering into account in the partition functio
calculation.4,5 The same approach should be applied in t
dimensions; however, scattering theory in two dimension
relatively undeveloped compared to the 3D case. For
ample, the relation between low-energy scattering and bo
states, which has important consequences in the statis
mechanics, has been considered only very recently6,7 in two
PRB 580163-1829/98/58~7!/3963~6!/$15.00
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dimensions. In the present paper the connection betw
scattering and the statistical mechanics of a 2D plasm
studied.

In the next section we introduce the relation of the tw
dimensional scattering phase shift to the partition funct
and show that a proper consideration of the scattering st
removes discontinuities in the partition function in an ana
gous fashion to the 3D case. In Secs. III and IV we expl
this in more detail using an analytical model with an attra
tive square well potential before turning to a more realis
model of the statically screened electron-hole plasma, wh
is the main focus of this paper. We also compare in b
cases the influence on the second virial coefficient of
exchange interaction and the screened direct interact
Such considerations are crucial in understanding the na
of the strongly correlated electron-hole plasma in semic
ductor quantum wells.

II. PARTITION FUNCTIONS AND LEVINSON’S
THEOREM

The two-body interaction part of the partition function
2D interacting Boltzmann particles is given by

Zint5(
m,n

exp~2Em,n /kBT!

1
1

pE0

`

(
m52`

`
ddm~q!

dq
exp~2q2/qT

2!dq, ~1!

whereqT
252mkBT/\2, m is the reduced mass,m is the pro-

jection of the angular momentum onto the axis normal to
plane of 2D motion (m50,61,62, . . . ), dm(q) is the 2D
scattering phase shift8 dependent on the relative-motion mo
mentumq, Em,n are the bound-state energies~index n enu-
merates bound states with givenm), and the double sum in
the first term ranges only over bound states. Equation~1! is
3963 © 1998 The American Physical Society
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3964 PRB 58M. E. PORTNOI AND I. GALBRAITH
the 2D analogue of the Beth-Uhlenbeck formula and can
derived in the same fashion as in the 3D case.9

Often only the first term in Eq.~1! is considered when
calculating an internal partition function, neglecting t
phase shift term. For an attractive potentialgU(r), as g
decreases bound state energies increase towards the
tinuum. As such a state reaches zero energy, a partition f
tion that contains only the bound state sum will be disc
tinuous. These unphysical singularities would extend to
the thermal properties, such as pressure and specific
Integrating by parts we can rewrite Eq.~1! as

Zint5H(
m,n

exp~2Em,n /kBT!2 (
m52`

`

dm~0!/pJ
1

2

pqT
2E

0

`S (
m52`

`

dm~q!D exp~2q2/qT
2!qdq. ~2!

For nonzero temperature the integral term in the right-h
side of Eq. ~2! is a smooth function of the interactio
strengthg. If the phase shifts satisfy the condition

lim
q→0

dm~q!5nmp, ~3!

wherenm is the number of bound states with givenm, the
zero-energy part of the phase shift integral in Eq.~1! exactly
cancels the zero-energy part of the bound-state sum, rem
ing the discontinuity inZint as a function of the interaction
strength. This cancellation is similar to the well-known b
havior in three dimensions where the partition function d
continuities are removed5 with the help of Levinson’s
theorem.10 Equation ~3! constitutes the 2D statement o
Levinson’s theorem.

As a central theorem of scattering theory,11 Levinson’s
theorem has been discussed for Dirac particles, multicha
scattering, multiparticle single-channel scattering, o
dimensional scattering systems, impurities in Aharon
Bohm rings, systems with non-uniform effective mass, a
even for time-periodic potentials.12 However, its applicabil-
ity to the 2D scattering problem has been considered o
recently. In Ref. 6 the 2D statement of Levinson’s theore
Eq. ~3!, was proposed and verified empirically, while in Re
7 this theorem was more rigorously established for cu
potentials using the Green-function method. The above a
ments, based on the partition function continuity requi
ment, provide an additional statistical mechanical justifi
tion of Levinson’s theorem in 2D.

The two-body interaction part of the partition function c
be used to calculate the second virial coefficientB(T) that
characterizes the first correction to the ideal gas law in
low-density expansion of pressure,

P5nkBT~11Bn1••• !. ~4!

B is positive for repulsive potentials, causing an increase
the pressure over its ideal-gas value, and negative for at
tive potentials, causing a decrease in the pressure. A ca
lation of the second virial coefficient is meaningful in th
dilute gas regime, where the mean inter-particle spac
n21/2 is larger than the thermal wavelengthl
5(2p\2/MkBT)1/2 and the higher-order terms in Eq.~4! are
e
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negligible. For a free, Bose, or Fermi gas in two dimensio
B(T)57l2/4,13 the plus sign applying to the Fermi case,
the Pauli principle introduces an effective repulsion betwe
fermions, thereby increasing the pressure. There is exten
ongoing research in the statistical mechanics of anyons,
particles obeying fractional statistics,14 and the second viria
coefficient of a free anyon gas lies in between the boso
and fermionic value.15 In this paper we focus on the relativ
importance of interaction-induced bound and scatter
states on the second virial coefficient.

The 3D analysis of the second virial coefficient16 is easily
reformulated for a 2D interacting gas.13 For a system of iden-
tical particles with spins the second virial coefficient is

B~s!~T!5
l2

2s11S 7
1

4
2

2Zint
~s!

2s11D , ~5!

where the upper sign is for bosons and the lower sign
fermions. The exclusion principle modifies the sum overm
in Eq. ~2! depending on the angular momentum parity, a
the partition function@using Eq.~3!# is

Zint
~s!5~2s11!(

m,n
S s1

16~21!m

2 D
3@exp~2Em,n /kBT!21#1~2s11!

2

pqT
2

3E
0

`

qdqF (
m52`

` S s1
16~21!m

2 D dm~q!G
3exp~2q2/qT

2!. ~6!

The electron-hole plasma constitutes a mixture of t
components and for a binary mixture of componentsC and

D having second virial coefficientsBC
(s) andBD

(s8) and densi-
ties nC and nD , respectively, the second virial coefficien
is13

B~T!5S nC

n D 2

BC
~s!12

nCnD

n2 BCD1S nD

n D 2

BD
~s8! . ~7!

In Eq. ~7! n5nC1nD and

BCD52lm
2 Zint , ~8!

where

lm
2 5

2p\2

2mkBT
, m5

MCMD

MC1MD
, ~9!

and Zint is given by Eq.~1! or Eqs. ~2! and ~3! with the
properly chosen reduced massm.

III. BOLTZMANN GAS WITH SHORT-RANGE
ATTRACTION

Our first example, the Boltzmann gas with weak sho
range attraction is chosen to elucidate how the second v
coefficient at given temperature vanishes when the bind
energyEb decreases, even though the bound-state part of
internal partition functionZbound5exp(Eb /kBT) approaches
unity rather than vanishes. To trace the precise nature of
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cancellation ofZbound it is convenient to use Eq.~1! for Zint
without the application of Levinson’s theorem.

Let us assume that the 2D particles interact via an att
tive square-well potential of radiusa and depthV0. This
simple model allows analytical treatment that provides
sight into the generic behavior of a gas of attracting partic
To evaluate the partition function we need to analyze b
the bound and scattering states in this potential. The bind
energies for any value of angular momentumm can be easily
found by matching the logarithmic derivative of the rad
wave function atr5a:

Ak0
22k2Jumu11~aAk0

22k2!

Jumu~aAk0
22k2!

5
kK umu11~ka!

K umu~ka!
, ~10!

where k0
252mV0 /\2, k252mEb /\2, Jm(x) is the Bessel

function of the first kind andKm(x) is the modified Besse
function of the second kind. Note that fork0a,2.4 @i.e.,
smaller than the first root ofJ0(x)# there is only one bound
state~havingm50) and fork0a,1 this state is very shal
low, e.g., for k0a51, Eb /V0'0.04, for k0a50.5, Eb /V0
'231027. For a shallowm50 state the transcendent
equation for binding energies Eq.~10! reduces to

k0aJ1~k0a!

J0~k0a!
5

kaK1~ka!

K0~ka!
52

1

ln~cka!
, ~11!

where c5exp(g)/2 (g'0.577 215 7 . . . is Euler’s con
stant!.

For the unbound states with positive energy of the rela
motion,E5\2q2/2m, scattering phase shifts can be found
a similar fashion. For small values of the momentum,qa
!1, all phase shifts formÞ0 are small compared to
d0 (s-wave scattering!.17 The tangent of thes-wave scatter-
ing phase shift forq!k0 ~i.e., E!V0) is given by:18

tand05
p/2

ln~cqa!1
J0~k0a!

k0aJ1~k0a!

. ~12!

Substitutingk0aJ1(k0a)/J0(k0a) from Eq. ~11! into Eq.
~12! we get

tand05
p

ln~E/Eb!
. ~13!

Note that this expression does not contain parameters o
potentialV0 anda explicitly, and it is valid for an arbitrary
potential well with a shallowm50 level.19

Since the integrand in the partition function Eq.~1! con-
tains an exponential factor exp(2q2/qT

2), the wave vectorsq,
which are larger than the thermal wave vectorqT , give neg-
ligible contribution to the value of the integral. Therefore f
the short-range interaction or for low temperature, satisfy
condition kBT!\2/2ma2, the scattering phase shifts nee
only be considered forq!1/a. Then all the terms in the
phase shift sum in Eq.~1!, except for the term withm50,
can be neglected. Finding the derivative ofd0 from Eq. ~13!
we obtain for the two-body interaction part of the partitio
function
c-

-
s.
h
g

l

e

he

g

Zint5exp~Eb /kBT!2E
0

` exp~2E/kBT!

p21 ln2~E/Eb!

dE

E
. ~14!

The integral in Eq.~14! is the Ramanujan integral,20 which
can be rewritten as20,21

E
0

` e2xt

p21~ ln t !2

dt

t
5ex2n~x!, ~15!

where

n~x!5E
0

` xt

G~ t11!
dt, ~16!

with x5Eb /kBT. Thus, the partition function acquires a ve
simple form

Zint5n~Eb /kBT!. ~17!

A similar result has been obtained recently for conta
interacting particles.14

To consider the smallx asymptotic of the functionn(x) it
is convenient to expand the integral Eq.~16! in descending
powers of ln(1/x):

n~x!5
1

ln~1/x!
1

g

ln2~1/x!
1O~@ ln„1/x!#23

…. ~18!

From Eq. ~18! one can see thatZint and hence the secon
virial coefficient B52l2Zint both vanish when Eb /kBT
→0 , although one bound state always exists. So the low
order density correction to the 2D ideal gas law vanish
only slowly as 1/ln(kBT/Eb) as the binding energy is reduce
Note that, when the potential supports several bound sta
the contribution of any shallow bound state withm50 is
cancelled by the scattering phase shift integral in the ‘‘log
rithmic’’ manner described above. FormÞ0 the cancellation
has a power-law dependence inEb /kBT.22 This implies that
higher-order Levinson’s theorems responsible for continu
of the partition function derivatives23 are different form
50 andmÞ0, whereas the zeroth-order Levinson’s theore
in two dimensions has the same form, Eq.~3!, for all m.

For extremely weak interaction potential, such th
(k0a)2!1/ln(\2/2ma2kBT), from Eqs. ~11! and ~18! it fol-
lows thatZint'V0ma2/2\2, which coincides with the pertur
bation theory result. In the other limit for largex values
(Eb /kBT@1), n(x)→ex,24 therefore the exponential depen
dence of the partition function on the binding energy is
covered.

In Fig. 1 we plot the ratio of the total partition functio
Zint to its bound-state partZbound5exp(Eb /kBT) as a function
of Eb /kBT. We do this for both the full expression, Eq.~16!,
and the first two terms in the asymptotic expansion, Eq.~18!.
One can see that the asymptotic expression~dashed line in
Fig. 1! is accurate only for very small values ofEb /kBT.
Over a wide range ofEb /kBT both scattering and bound
state terms are important, e.g., whenEb5kBT the scattering
term produces a 20% correction toZint . WhenEb /kBT.3
the bound-state contribution dominates completely.

It is instructive to compare the contributions to the seco
virial coefficient of the direct and the exchange interactio
For example, for a gas of spinless bosons the second v
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3966 PRB 58M. E. PORTNOI AND I. GALBRAITH
coefficient isB52l2(1/412Zint). For Zint given by Eq.
~17!, the direct interaction term (2Zint) is smaller than the
exchange term~1/4! for small binding energies. Thus, as r
quired for vanishing binding energy, the second virial co
ficient is governed by the statistics of particles, despite
existence of a single bound state.

IV. ELECTRON-HOLE PLASMA

In this section we study a more realistic model of an
teracting gas than the one considered in Sec. III. We cons
a mixture of the two types of Fermi particles, positive
charged holes (h) and negatively charged electrons (e). This
model is important for understanding the thermodynamic
optical properties of the electron-hole plasma in semicond
tor quantum wells. In the low-temperature, low-density lim
most electron-hole pairs are bound into excitons. This li
has been studied extensively because of the recent prop
of exciton condensates in this system.25,26 The properties of
the degenerate 2D electron-hole plasma are also
known.27 We consider the case when the temperature is c
parable to the exciton binding energy so the occupation
continuum states~and therefore screening! is significant, al-
though the carrier density is low enough to neglect the te
higher thanBn in the virial expansion. The temperature a
density conditions under investigation are close to those
the regime where excitonic gain in wide-gap semiconduc
is anticipated.28

We assume for simplicity equal massesMe5Mh5M and
spins s5s851/2 for both species. ThenZhh5Zee and the
second virial coefficient for the mixture Eq.~7! acquires the
form

B5
l2

4 S 1

4
22Zeh2ZeeD . ~19!

Here l5lm5(2p\2/MkBT)1/2 and the charge neutralit
conditionne5nh is taken into account.

FIG. 1. Two-dimensional Boltzmann gas with a short-ran
weak attraction: the ratio of the two-body partition function to
bound-state part,Zint /Zbound5n(Eb /kBT)/exp(Eb /kBT), is plotted
vs Eb /kBT. Dashed line: the functionn(x) is approximated by
1/ln(1/x)1g/ ln2(1/x).
-
e

-
er

d
c-

it
als

ll
-

of

s

in
rs

The screened Coulomb attraction between electrons
holes is modeled using the Fourier representation of the
teraction potential:

Vq522
2p

q1qs
, ~20!

whereqs is the screening wave vector. Hereafter we emp
3D excitonic Rydberg units where length and energy
scaled, respectively, by the effective Bohr radiusa* and Ry-
dberg Ry* . For electron-electron and hole-hole repulsion t
same potential with the opposite sign is used. Equation~20!
is the well-known Thomas-Fermi expression for the Co
lomb potential statically screened by a 2D electron gas.
ing the long-wavelength static limit of the random-phase
proximation, Eq.~20! is a simple model for the screene
Coulomb potential in two dimensions. Nevertheless, this
pression reflects the fact that the statically screened pote
in two dimensions decreases at large distances slower tha
the 3D case~as a power law rather than exponentially!. De-
spite numerous more realistic corrections2,29 Eq. ~20! re-
mains the most widely used approximation for the 2
screening.30,31 This potential has been known for more tha
three decades8 but some of its unusual properties were on
discovered recently, e.g., the existence of a remarka
simple relation betweenqs and the number of bound state
Namely, with decreasing screening, bound states appea
the critical integer values of the screening length given
the simple formula6

S 1

qs
D

c

5
~2umu1n21!~2umu1n!

2
, n51,2, . . . , ~21!

wherem is the angular momentum and (n21) indicates the
number of nonzero nodes of the radial wave function. Eq
tion ~21! shows that several bound states corresponding
the given value of (2umu1n) appear simultaneously. Thi
degeneracy is different from the degeneracy for the bo
states of the unscreened 2D exciton~or hydrogen atom!, for
which the states with the same value of (umu1n) are
degenerate.30,32The hidden symmetry that underlines this d
generacy has not been fully understood yet, and Eq.~21! still
lacks a rigorous analytical derivation.

We also consider the low-density~nondegenerate! limit,
when there is no Pauli blocking and the self-ener
correction33 to the Beth-Uhlenbeck formula can be neglect
and Eqs.~2! and~3! and Eq.~6! can be used forZeh andZee,
respectively. The shortcomings of this model for the quan
tative description of a real system of photoexcited electr
and holes in semiconductor quantum wells are self-evid
however, it does provide a tractable model containing all
salient features of the system.

To find the second virial coefficient given by Eq.~19! one
must calculate the binding energies and scattering ph
shifts entering the partition functionsZeh and Zee. We use
for this purpose the 2D modification of the variable-pha
method34 known from scattering theory. In this method th
scattering phase shift and the function defining bound-s
energies can be obtained as a large distance limit of
phase function, which satisfies the first-order, nonlinear R
cati equation originating from the radial Schro¨dinger equa-
tion. The variable-phase method application to scattering
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bound states in the screened Coulomb potential~20! is de-
scribed in detail in Ref. 6. The method is especially effect
for calculation of shallow-state binding energies and lo
energy scattering phase shifts.

Figure 2 shows the results from the calculation of t
electron-hole part of the partition functionZeh , which con-
tains both the bound state sum and the scattering phase
integral. In this figureZeh is plotted as a function of the
inverse screening wave number 1/qs . For the electron-hole
plasmaqs is a function of carrier density,30 and in the purely
2D caseqs}(ne1nh) for low densities and is independent
density, qs→8/a* for Me5Mh , in the degenerate limit
Here we treatqs as a parameter characterizing the strength
the screened interaction potential Eq.~21!. To emphasize the
role of scattering we show on the same plot the bound-s
sum, Zbound5(m,nexp(2Em,n /kBT), which exhibits jumps
whenever new bound states appear@i.e., whenqs satisfies Eq.
~21!#. These jumps become higher with increasing screen
length 1/qs since several bound states appear simultaneou
As can be seen, the additional scattering phase shift co
butions completely remove these jumps. The partition fu
tion is plotted for two values of the ratio ofkBT to the exci-
tonic Rydberg, kBT51 Ry* and kBT55 Ry* , which
roughly correspond to ZnSe~or GaN! and GaAs at room
temperature. One can see that for high temperature~or low
binding energy! the bound-state contributions toZeh are sup-
pressed by the scattering phase shift integral more stro
than in thekBT51 Ry* case.

In Fig. 3 the second virial coefficientB ~scaled byl2) is
plotted versus the screening wave numberqs for two differ-
ent values ofkBT/Ry* . Equation~19! is used for the calcu-
lation of B, and the repulsion (Zee) term partially compen-
sates the Zeh term. This compensation is especial
significant in the high-temperature casekBT55 Ry* , in
which the 2D electron-hole plasma behaves much like
ideal gas over a wide range of screening wave vectors.
kBT51 Ry* the electron-hole attraction term dominat
and the plasma is strongly correlated for all values ofqs . In
this case a small statistical repulsion (B/l251/16, horizontal
line in Fig. 3!, which is due to the fermionic nature of ele

FIG. 2. The electron-hole part of the partition functionZeh vs
the screening length 1/qs for two values ofkBT/Ry. Solid lines
show the bound-state contributionsZbound only. Dashed lines:
Zbound1Zscatt.
e
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hift
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te

g
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ly

n
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trons and holes, can be completely neglected. Thus, at ro
temperature the electron-hole plasma in GaAs-based qu
tum wells can be treated as an ideal gas, whereas in wide-
semiconductors~e.g., ZnSe or GaN! due to the high value of
Ry* the 2D electron-hole plasma is strongly correlated a
excitonic effects are important for its thermodynamic pro
erties.

V. CONCLUSION

In this paper we show that a proper account of scatter
eliminates discontinuities in thermodynamic properties of t
nonideal 2D gas whenever extra bound states appear w
small increase of the strength of an attractive potential. T
treatment provides a heuristic proof of Levinson’s theore
in two dimensions.

We trace the way in which the bound-state contribution
the partition function of the 2D gas, with a weak short-ran
attraction between its particles, vanishes when the bind
energy decreases. A weak 1/ln(kBT/Eb) binding energy de-
pendence of the second virial coefficient of such a gas
found for Eb /kBT→0.

A consistent treatment of bound and scattering states
screened Coulomb potential allows us to calculate t
quantum-mechanical second virial coefficient of the dilu
2D electron-hole plasma and to establish the difference
tween the nearly ideal electron-hole gas in GaAs and
strongly correlated exciton/free-carrier plasma in wide-g
semiconductors.

The 2D electron-hole plasma was considered in the lo
density nondegenerate limit only. Transition to the strong
degenerate Fermi limit and related questions of Pauli blo
ing and self-energy corrections to the Beth-Uhlenbeck fo
mula in 2D remain the subject of further research.
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FIG. 3. The second virial coefficient of the dilute electron-ho
plasmaB/l2 as a function of the screening wave numberqs . Solid
line, kBT51 Ry* ; dashed line,kBT55 Ry* ; dot-dashed line,
noninteracting dilute electron-hole plasma,B/l251/16.
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V. Milanović et al., Phys. Lett. A170, 127~1992!; V. Milanović
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