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Elementary excitations of incompressible quantum liquids~IQL’s! are anyons, i.e., quasiparticles carrying
fractional charges and obeying fractional statistics. To find out how the properties of these exotic quasiparticles
manifest themselves in the optical spectra, we have developed the anyon-exciton model~AEM! and compared
the results with the finite-size data for excitons ofn51/3 andn52/3 IQL’s. The model considers an exciton
as a neutral composite consisting of three quasielectrons and a single hole. The AEM works well when the
separation between electron and hole confinement planes,h, obeys the conditionh*2l , wherel is the mag-
netic length. In the framework of the AEM an exciton possesses momentumk and two internal quantum
numbers, one of which can be chosen as the angular momentumL of thek50 state. Charge fractionalization
manifests itself in striking differences between the properties of anyon excitons and ordinary magnetoexcitons.
The existence of the internal degrees of freedom results in the multiple-branch energy spectrum, craterlike
electron density shape, and 120° density correlations fork50 excitons, and the splitting of the electron shell
into bunches forkÞ0 excitons. Forh*2l the bottom states obey the superselection ruleL53m, where
m>2 are integers, and all of them are hard-core states. Forh'2l there is one-to-one correspondence between
the low-energy spectra found for the AEM and the many-electron exciton spectra of then52/3 IQL, whereas
some states are absent from the many-electron spectra of then51/3 IQL. We argue that this striking difference
in the spectra originates from the different populational statistics of the quasielectrons of charge conjugate
IQL’s and show that the proper account of the statistical requirements eliminates excessive states from the
spectrum. Apparently, this phenomenon is the first manifestation of the exclusion statistics in the anyon bound
states.@S0163-1829~96!07643-6#

I. INTRODUCTION

Incompressible quantum liquids1 ~IQL’s! underlie the
fractional quantum Hall effect~FQHE! discovered by Tsui,
Stormer, and Gossard.2 The charge carriers in these liquids
are anyons, i.e., quasiparticles~quasielectrons and quasi-
holes! carrying fractional charges1 and obeying fractional
statistics.3,4 Historically the main experimental discoveries in
this field were done by magnetotransport experiments. How-
ever, the role of spectroscopic methods is continuously in-
creasing since they provide an indispensable tool for inves-
tigating spectra of elementary excitations. Fine structure
specific for different electronic phases was discovered in the
spectra of radiative photoemission.5 These spectra were used
to measure gaps in the energy spectra of IQL’s, for investi-
gation of phase transitions between the IQL and Wigner
solid phases, etc. The frequency of long-wave neutral el-
ementary excitations of IQL’s was measured in Raman scat-
tering experiments.6

A challenging problem in physics of IQL’s is a direct
observation of the charge fractionalization. Between differ-
ent exciting approaches to this problem the spectroscopic
approach seems to be one of the most promising. Indeed,
spectroscopy permits one to observe properties of IQL’s in
the bulk where the effect of the impurities and edges is re-

duced to the minimum. The intrinsic spectroscopy of IQL’s
is the magnetospectroscopy of excitons. However, properties
of excitons reflect the spectrum of the elementary excitations
of an IQL ~quasielectrons and quasiholes, magnetorotons,7

etc.! and can be treated in terms of them only when the
separationh between electron and hole confinement planes is
sufficiently large. Indeed, whenh& l , wherel is the magnetic
length, the filling factorn of the liquid strongly deviates in
the vicinity of the hole from the quantized valuen5p/q.
Under these conditions the properties of the IQL cannot be
treated in terms of its quasiparticles. The spectroscopy of a
remote hole has been discussed from different standpoints in
a number of papers.8–12 Despite the fact that experiments in
theh@ l region are rather complicated, the separations up to
h'5l were achieved in experiments on extrinsic radiative
photoemission.13 Of special importance might be experi-
ments performed for a fixed filling factorn5p/q and a vari-
able dimensionless electron-hole separationh/ l .14 The first
experiments of this kind were reported recently.15

The investigation of excitons is also important from the
different standpoint. In the theory of IQL’s the statistical
properties of the system of free anyons are usually discussed.
In an exciton the anyons exist in a bound state because of the
attracting potential of a hole. It was shown16,17 that the en-
ergy spectra of excitons ofn51/3 and n52/3 IQL’s are
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closely related to the statistical and dynamical properties of
quasielectrons of these IQL’s. Therefore, the exciton prob-
lem can be really treated as a few-anyon problem. Excitons
represent a wide class of few-anyon systems. It includes ex-
citons, anyon ions18,19 ~which can be also treated as
quasiparticle-exciton complexes20!, some impurity centers,
etc. In what follows, we consider excitons as bound few-
anyon composites and investigate their properties in some
detail.

There are two approaches to the theory of excitons in
IQL’s. The first approach is based on the exact diagonaliza-
tion for finite-size systems in the spherical geometry.21 Hav-
ing in mind workable system sizes, it provides reliable re-
sults for h&2l , at least as applied to then51/3 and
n52/3 IQL’s. The second approach is based on the anyon-
exciton model~AEM! proposed by the present authors.11,22

In the framework of this approach an exciton is considered as
a neutral composite quasiparticle consisting of several
anyons and a hole. This model is exact only when the exci-
ton size which is abouth is large compared to the size of
anyons which is aboutl , i.e., forh/ l@1. Therefore, the two
approaches are complementary and one can expect that they
match whenh/ l;1.

It is the main statement of the AEM that excitons of
IQL’s possess a multiple-branch spectrum. Indeed, a charged
particle at the lowest Landau level possesses a single degree
of freedom and a single quantum number. An exciton being
a neutral entity possesses in a magnetic field a vector mo-
mentumk absorbing two degrees of freedom.23 Therefore, an
exciton consisting ofq anyons and a hole possessesq21
internal degrees of freedom. For an ordinary magnetoexciton
q51 and the spectrum consists of a single-branch. For
q>2 an exciton acquires internal quantum number~s! and
multiple-branch spectrum. This prediction of the AEM per-
mitted Apalkovet al.16,17,24 to represent the energy spectra
found by finite-size computations forn51/3 and n52/3
IQL’s as a system of exciton-branches and to assign to these
branches internal quantum numbers. The latter determine the
values of the exciton angular momentumL in the k50
states. Zang and Birman25 and Chen and Quinn26 also in-
ferred the existence of several exciton branches in their
finite-size data.

In the range accessible for finite-size studies,h&2l , there
are two types of excitons in the lower part of the energy
spectrum, anyon excitons and tight excitons.Anyon excitons
are loose entities with a pronounced anyon-density dip at the
center. They are generically related to the quantum states
making up the low-energy~anyon! sector27,28of the electron
subsystem. Each anyon exciton is a bound state of a three-
quasielectron complex from the anyon sector and a hole.
This finding establishes a connection between the spectros-
copy of excitons and the low-energy physics of the FQHE.
There is a striking difference in the quantum numbers of the
low-energy anyon-excitons of then51/3 andn52/3 IQL’s.
It is related to the difference in the energy spectra of the
three-quasielectron complexes originating due to the differ-
ent populational statistics of the quasielectrons of these liq-
uids.Tight excitonsare dense entities. A sharp density maxi-
mum is achieved either in the center of an exciton or in a
close vicinity of the center. These excitons are not related to
the low-energy sector of the electron subsystem. TheL50

tight exciton is the bottom state of the exciton spectrum in all
the regionh&2l . Therefore, theh*2l region seems to be of
the most importance for the study of the anyon substructure
of excitons and for the spectroscopic observation of the
charge fractionalization.

We suppose everywhere in this paper that the spin-
polarized background is stable with respect to formation of
charged spin textures~skyrmions!. It was predicted
recently29 that spin textures develop in the ground state of a
n51 exciton for large values ofh/ l ; the critical value of
h/ l is about 1.5 for GaAs. Nevertheless, we feel that the
spin-polarized ground state of an51/3 magnetoexciton is
stable because skyrmions can exist only at very low mag-
netic fields whenn'1/3.30 Spin-depolarized excitons should
be seen in the spectrum of excited states.

In this paper we develop the theory of excitons in the
framework of the AEM as applied to excitons consisting of
three quasielectrons and a hole. We use Halperin
pseudo-wave-functions3 in a boson basis and investigate the
energy spectrum, electron density distribution, and anyon
correlations in an exciton. We make comparison with the
finite-size data16,17 on the excitons of then51/3 and
n52/3 IQL’s and conclude that excitons of then52/3 IQL
are described rather well by the AEM because of the bosonic
populational statistics and the narrow form factors of the
quasielectrons of this liquid. We also relate the difference in
the energy spectra of the anyon excitons of then51/3 and
n52/3 IQL’s to some specific features in the exciton shape
found in the framework of the AEM. For both IQL’s the
bottom exciton states are made by tightL50 excitons for
h&2l and by a succession of anyon excitons forh*2l . This
succession consists of hard-core excitons with the angular
momentaL which are integers of 3 and increase asL}h2

with h.
The general outline of the paper is as follows. In Sec. II

we construct a full basis of the exciton wave functions for
the AEM using the translational symmetry and permutation
symmetry arguments. In Sec. III we develop a technique for
calculating different matrix elements entering the Schro¨-
dinger equation. In Secs. IV, V, and VI we obtain energy
spectra, electron density distributions, and the density corre-
lation functions, respectively. The latter functions unveil the
anyon substructure of excitons both in the finite-size data and
in the AEM. In Sec.VII we make a comparison of the results
obtained in the framework of the AEM with finite-size data
of Refs. 16 and 17. We propose that a striking difference in
the finite-size data for then51/3 andn52/3 IQL’s origi-
nates from the difference in the populational statistics of the
quasielectrons of these liquids.

II. WAVE FUNCTIONS

Let us consider an exciton consisting of a valence hole
with a charge (1e) and three QE’s with electrical charges
(2e/3) and statistical chargesa. Such an entity provides the
AEM description of the anyon excitons of then51/3 and
n52/3 IQL’s. For an n51/3 IQL the statistical charge
equals a521/3, while for a n52/3 IQL the statistical
charge has the same value,a51/3, as for quasiholes in a
n51/3 IQL.3 In comparison,a50 for bosons anda51 for
fermions. In the strong magnetic field limit, when the Cou-
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lomb energy«C5e2/e l!\vc , wherevc is the cyclotron
frequency and« is the dielectric constant, it is convenient to
employ dimensionless variables scaled in units«C , l , and
e. We use the symmetric gauge,A5 ẑ3r /2, whereẑ is a unit
vector perpendicular to the confinement plane. Instead of the
hole, rh , and anyon,r i , coordinates it is convenient to in-
troduce the following two-dimensional~2D! coordinates:

R5
1

2 S rh1 1

3(i51

3

r i D , r5
1

3(j51

3

r j2rh , r j l5r j2r l ,

j l512, 23, and 31. ~1!

R has a meaning of the center-of-mass of the exciton coor-
dinate. The coordinatesr and r j l are the internal variables
which are not affected by the translational motion of an ex-
citon. Complex coordinateszjl5xjl1 iy j l , as well asr j l , are
not independent. Indeed,

r121r231r3150. ~2!

Despite the fact that the constraint~2! results in some com-
plications, the introduction of the variablesr j l enables one to
develop the theory in a form symmetric in all anyons and,
therefore, finally simplifies the equations.

Anyons and hole live in two different parallel planes
separated by the distanceh. Nevertheless, only the 2D coor-
dinates of Eq.~1! enter into the exciton wave function. The
separationh enters only into the Hamiltonian of the anyon-
hole interaction derived in the Sec. III C.

The most general form of the pseudo-wave-function of an
anyon exciton meeting all general requirements is as follows:

CL,k~R,r,$z̄j l %!5expH ikR1
i

2
ẑ•~r3R!2

1

4
~r2d!2J

3PL~••• z̄j l ••• !

3)
j l

~ z̄j l !
aexp$2uzjl u2/36%YA 2pA,

~3!

where the pair of indicesj l takes the values specified in Eq.
~1!, A is the normalization area, andPL is a homogeneous
polynomial in coordinatesz̄j l of the degreeL.

The basic properties of the functionsCL,k can be checked
by inspection.~i! Since the exciton is a neutral entity, it
possesses an in-plane momentumk,23 andCL,k satisfies the
equation of magnetic translations:

TaCL,k~R,r,$z̄j l %!5exp@ ia•A~r!#CL,k~R2a,r,$z̄j l %!

5e2 ik•aCL,k~R,r,$z̄j l %!. ~4!

The parameterd5 ẑ3k is related to the dipole moment of
the exciton (2d). ~ii ! The functionCL,k belongs to the low-
est Landau level. Indeed, the nonanalytic factor of it can be
shown to have the form

expH 2
1

12
( j uzj u22

1

4
uzhu2J ,

whereas the other factors are analytic functions ofz̄j and
zh . ~iii ! The functionPL(••• z̄j l •••) is a homogeneous poly-

nomial of the degreeL which is symmetric in all coordinates
z̄j . These polynomials form a boson basis, and the effect of
the fractional statistics is taken into account by the factor
) j l ( z̄j l )

a.3,31 ~iv! A system of four charged particles in a
magnetic field possesses four quantum numbers. Two of
them are absorbed in the 2D momentumk. Two others de-
termine the form of the polynomialPL and are internal quan-
tum numbers of an anyon exciton. The operatorL̂z of the z
projection of the angular momentum commutes with the
Hamiltonian and the square of the momentum,k̂2, but it does
not commute with the projections ofk̂, i.e., with k̂x and
k̂y . Therefore, the functionCL,k chosen in thek̂x ,k̂y repre-
sentation is simultaneously an eigenfunction ofL̂z only for
k50, and in this limitLz52L.

Therefore, the quantum numbers of an anyon exciton in-
clude the 2D momentumk and the projection of the angular
momentum,Lz52L, of the exciton withk50. The angular
momentumL numerates branches of the exciton spectrum.
The fourth quantum number, which will be specified in what
follows, numerates branches with coinciding values ofL.
The multiple-branch structure of the anyon exciton spectrum
is a direct consequence of the charge fractionalization which
results in the appearance of the internal degrees of freedom
of an anyon exciton and of the related internal quantum num-
bers.

By definition, the polynomialPL is symmetric in coordi-
natesz̄j . To establish the symmetry of it in the symmetric
coordinatesz̄j l , one can start with a monomialz̄12

l3 z̄23
l1 z̄31

l2 ,
apply to it all operations of the permutation group, and take
the sum over the group. This transformation results in the
polynomial

~ z̄ 12
l3 z̄ 23

l1 z̄ 31
l21 z̄ 23

l3 z̄ 31
l1 z̄ 12

l21 z̄ 31
l3 z̄ 12

l1 z̄ 23
l2 !

1~2 ! l11 l21 l3~ z̄ 12
l3 z̄ 31

l1 z̄ 23
l21 z̄ 23

l3 z̄ 12
l1 z̄ 31

l21 z̄ 31
l3 z̄ 23

l1 z̄ 12
l2 !,

which has different properties depending on the parity of
L5 l 11 l 21 l 3. If L is even, the polynomial is a permanent,
and, therefore, is symmetric in the coordinatesz̄j l . However,
when L is odd, the polynomial is a determinant which is
obviously antisymmetric in the coordinatesz̄j l and is non-
equal to zero only forl 1Þ l 2Þ l 3. For example, for the lowest
possible value ofL, L53, this determinant turns into a Van-
dermonde determinant

W~ z̄12,z̄23,z̄31!5U 1 1 1

z̄12 z̄23 z̄31

z̄ 12
2 z̄ 23

2 z̄ 31
2
U

5~ z̄122 z̄23!~ z̄232 z̄31!~ z̄312 z̄12!. ~5!

Therefore,L-even andL-odd polynomialsPL have rather
different properties. All of them are symmetric in bosonic
permutationsz̄1↔ z̄2, etc., but they have opposite symmetry
with respect to the permutations of thez̄12↔ z̄23 type. To find
the explicit form of the polynomialsPL , it is convenient to
introduce new real coordinates

jj5r j2r0 , r05
1

3(l51

3

r j l , ~6!
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wherer0 is the center of mass of the anyon sybsystem. The
corresponding complex coordinates arez j5j jx1 i j jy . These
coordinates are subject to the constraint

(
j51

3

jj50, (
j51

3

z j50. ~7!

In these coordinates the bosonic symmetry ofPL has the
usual form, and we can apply the fundamental theorem of the
theory of symmetric polynomials.32 According to it,
PL( z̄1 ,z̄2 ,z̄3) can be expressed in the unique way as a poly-
nomial in the three elementary symmetric polynomials:

p15 z̄11 z̄21 z̄3 , p25 z̄1z̄21 z̄2z̄31 z̄3z̄1 , p35 z̄1z̄2z̄3 .
~8!

The first polynomial is equal to zero,p150, because of the
constraint of Eq.~7!. Therefore, the polynomialsPL are
polynomials only inp2 andp3. The firstL-even polynomials
are P0 5 const,P2}p2, P4}p2

2; i.e., there exists only a
single elementary polynomial of a given degreeL. However,
two elementary polynomials,p2

3 andp3
2, contribute toP6. It

is easy to check that the number of basis functions increases
by one each time whenL takes valuesL56m, wherem is an
integer. Therefore, the number ofL-even polynomials is
equal to@L/6#11, where@L/6# is the integral part ofL/6.
All L-odd polynomials can be obtained by multiplying

L-even polynomials byp3. The latter equalsp352 1
27 W

because of Eq.~6!.
We are now in position to choose a full basis of polyno-

mials PL in symmetric coordinatesz̄j l . These coordinates
are most convenient for all the following calculations.
L-even polynomials can be chosen as

PL,M5 z̄ 12
L24Mz̄ 23

2Mz̄ 31
2M1 z̄ 23

L24Mz̄ 31
2Mz̄ 12

2M

1 z̄ 31
L24Mz̄ 12

2Mz̄ 23
2M , ~9!

whereM50,1, . . .@L/6#. PolynomialsPL,M are linearly in-
dependent, and the total number of polynomials with a given
L is equal to@L/6#11. All linearly independentL-odd poly-
nomials can be obtained as

PL,M5WPL23,M , P3,05W. ~10!

The total number of them equals@(L23)/6#11.
This choice of polynomials determines the full set of

quantum numbers in the wave function of Eq.~3! asL, M ,
andk. To our best knowledge, in the previous studies only
the L-even polynomials have been taken into account.33

When choosing polynomialsPL,M , we have not imposed the
hard-core constraint and defer the discussion of the related
properties to what follows.

It is an important feature of the AEM that the wave func-
tions ~and, therefore, electron densities, etc.! of all eigen-
states withL<5 and alsoL57 are completely determined
by the symmetry requirements. They do not depend on the
specific form of the Hamiltonian and, in particular, onh.

III. THE SCHRÖ DINGER EQUATION

In this section we calculate the Hamiltonian of the AEM
in theCL,M ,k basis as the matrix of a point charge Coulomb

interaction. It means that we neglect form factors of
quasielectrons which have a scale of several magnetic
lengths and are known only approximately.34–36 We post-
pone the discussion of inaccuracy originating from this ap-
proximation to Sec. VII.

Unfortunately, functionsCL,M ,k are orthogonal only in
quantum numbersL and k. As a result, the scalar products
^CL,M ,k ,CL,M8,k&Þ0 forMÞM 8, and the matrixB̂ of these
scalar products is block diagonal. The size of blocks is equal
to 1 for L,6 andL57 and increases by 1 each time when
L increases by 6. With a nondiagonal matrixB̂ the Schro¨-
edinger equation has a form

Ĥx5«B̂x, ~11!

and one has to find matricesĤ and B̂. To perform the cal-
culations, it is convenient to employ variablesR, r, and three
r i j and to take into account the constraint of Eq.~2! by the
usual transformation:

d~r121r231r31!5E df

~2p!2
exp$ i f•~r121r231r31!%.

~12!

It adds the new variablef, but all calculations become sym-
metric in anyon variables. The Jacobian of the transforma-
tion is equal to 1.

The Hamiltonian is diagonal ink; therefore, we write out
only the diagonal ink matrix elements. Fork50, the Hamil-
tonian is also diagonal inL, and Eq.~11! acquires a block
diagonal form.

Since all terms in the polynomialsPL,M ,k , Eqs. ~9! and
~10!, have the same form, we concentrate in what follows on
the matrix elements taken in the basis of the functions
C$n%k :

C$n%k~R,r,$z̄j l %!5expH ikR1
i

2
ẑ•~r3R!

2 1
4 ~r2d!2J z̄ 12

n31az̄ 23
n11az̄ 31

n21a

3expH 2(
j l

uzjl u2/36J Y A2pA.

~13!

Here polynomialsPL,M are substituted by monomials, and
$n% denotes a set of quantum numbersn1 , n2, andn3. In the
following parts of this section we describe in some detail the
technique for performing different types of integrals.

A. Nonorthogonality matrix elements

The scalar products of functionsC$n%k , when written in
the variablesR, r, andr j l , have the form

B$n%$n8%5^$n%u$n8%&

5E dRE drE df

~2p!2
E dr12dr23dr31C̄$n%k

3C$n8%kexp$ i f•~r121r231r32!%. ~14!

13 794 54M. E. PORTNOI AND E. I. RASHBA



Integration overR and the Gaussian integration overr are
straightforward. SinceC$n%k is multiplicative in the variables
r j l , one can rewrite Eq.~14! in the form

^$n%u$n8%&5E df

~2p!2)j51

3

Mnjnj8
~a!

~ f!, ~15!

where

Mmm8
~a!

~ f!5E dr r 2azmz̄ m8e2r2/181 i f•r. ~16!

Since

E
0

2p

dwe6 imw1 i f r cosw52p i umuJumu~ f r !, ~17!

whereJumu( f r ) is a Bessel function, the angle integration in
Eq. ~16! results in

Mmm8
~a!

~ f!52p i um2m8uexp@ i ~m2m8!w f#Mmm8
~a!

~ t !, ~18!

wheret59 f 2/2, w f is the azimuth off, and

Mmm8
~a!

~ t !5E
0

`

drr 112a1m1m8e2r2/18Jum2m8u~ f r !.

~19!

This integral can be expressed in terms of the confluent hy-
pergeometric functionF(b,g;t) as37

Mmm8
~a!

~ t !5G~max$m,m8%1a11!

3
2um1m8u/21a3um1m8u12~a11!

um2m8u!
t um2m8u/2

3F~max$m,m8%1a11,um2m8u11;2t !.

~20!

Here max$m,m8% is the larger of the integersm andm8. After
the integration overw f in Eq. ~15!, the coefficients
^$n%u$n8%& take the form

^$n%u$n8%&5dnn8~2p/3!2E
0

`

dt)
j51

3

i unj2nj8uMnjnj8
~a!

~ t !,

~21!

where

n5n11n21n3 . ~22!

Therefore, the scalar product^$n%u$n8%& of two functions
C$n%k is reduced to a onefold integral from the product of
three confluent hypergeometric functions. Matrix elements
^$n%u$n8%& do not depend on k. Scalar products
^L,M uL8,M 8& of two functionsCL,M ,k , which include poly-
nomials PL,M , are linear combinations of the coefficients

^$n%u$n8%&. They do not depend onk either. The coefficients
of these combinations can be found from Eqs.~5!, ~9!, and
~10!, but the final expressions are rather cumbersome, espe-
cially for L-odd polynomials. Therefore, we do not write out
here their explicit form.

Integrals~21! can be simplified fora50. Indeed, in this
case the Kummer transformation37

F~b,g;t !5etF~g2b,g;2t ! ~23!

results in aF function with the first parameter (g2b) equal
to a negative integer. This function reduces to a polynomial,
andF(b,g;t) to a polynomial multiplied byet. Therefore,
the integral in Eq.~21! for ^$n%u$n8%& can be performed ex-
actly. This transformation highly simplifies calculations. In-
deed, in the largeh region, where the criterion of the appli-
cability of the AEM is satisfied, the statistical parametera
can be neglected as it is shown in Sec. IV below.

B. Anyon-anyon interaction

The Hamiltonian of the anyon-anyon interaction is

V̂aa5
1
9 $uz̄12u211uz̄23u211uz̄31u21%. ~24!

Matrix elements ofV̂aa in the basis of the functionsC$n%k
can be calculated by analogy with the matrix elements
^$n%u$n8%&. The denominatorsuz̄j l u21 lower the power ofr
by 1 in one of theMnjnj8

(a)
(f) factors entering in Eq.~15!. The

final expression for the matrix element is

^$n%uV̂aau$n8%&

5
1

9E df

~2p!2$Mn1n18
~a2 1/2!

~ f!Mn2n28
~a!

~ f!Mn3n38
~a!

~ f!

1Mn1n18
~a!

~ f!Mn2n28
~a2 1/2!

~ f!Mn3n38
~a!

~ f!

1Mn1n18
~a!

~ f!Mn2n28
~a!

~ f!Mn3n38
~a2 1/2!

~ f!% . ~25!

Like the nonorthogonality matrix elements, matrix elements
of V̂aa also do not depend on the momentumk. For this
reason, the matrix of the operatorV̂aa is diagonal in the
angular momentum,L, for arbitrary values of the momentum
k.

C. Anyon-hole interaction

The Hamiltonian of the anyon-hole interaction has a form

V̂ah52
1

3(j51

3

V̂jh , V̂jh~r jh!5r jh
21 , ~26!

where the three-dimensional anyone-hole separationr1h
should be expressed in terms of the difference coordinates:

r1h5r1 1
3 ~r122r31!1 ẑh. ~27!

Similar equations hold forr2h and r3h .
It is convenient to introduce the Fourier image
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V̂1h~r1h!52
1

3E dq

~2p!2
Vah~q!

3expH iq•r1
i

3
q•~r122r31!J , ~28!

whereVah(q)5(2p/q)exp(2qh). The integrations overR
andr in the matrix elements ofV̂1h(r1h) can be performed
in the same way as in Eq.~14!, and the result can be ex-
pressed in terms of the coefficientsMmm8

(a) , Eq. ~16!, as

^$n%uV̂1hu$n8%&52
1

3E df

~2p!2
E dq

~2p!2
Vah~q!e2q2/21 ik•q

3Mn1n18
~a!

~ f!Mn2n28
~a!

~ f2q/3!Mn3n38
~a!

~ f1q/3!.

~29!

After the angular integration, the factorsMnjnj8
(a) take the

form of Eq. ~18!, and Eq.~29! can be rewritten as

^$n%uV̂1hu$n8%&52
~2p!2

3 )
j51

3

i unj2nj8u E df

~2p!2
E dq

~2p!2
Vah~q!e2q2/21 ik•qexp$ iw f~n12n18!

1 iw2~n22n28!1 iw1~n32n38!%Mn1n18
~a!

~9 f 2/2!Mn2n28
~a!

~9 f1
2 /2!Mn3n38

~a!
~9 f2

2 /2!. ~30!

Vectorsf6 are defined by the equation

f65f6q/3. ~31!

One can perform one angular integration in Eq.~30! if the phasew f is eliminated by change in the variables:

w5w f2wq , c65w62w f . ~32!

Herew6 are phases of vectorsf6 .
After the integration overwq , Eq. ~29! takes its final form:

^$n%uV̂1hu$n8%&52
1

3
i un2n8u)

j51

3

i unj2nj8u E
0

`

d f fE
0

`

dqqVah~q!e2q2/2Jun2n8u~kq!E
0

2p

dwexp$ iw~n2n8!1 ic2~n22n28!

1 ic1~n32n38!%Mn1n18
~a!

~9 f 2/2!Mn2n28
~a!

~9 f1
2 /2!Mn3n38

~a!
~9 f2

2 /2!. ~33!

Here the direction ofk was chosen along thex axis to elimi-
nate the complex phase from the matrix element~33!. Ex-
plicit expressions ofc6 and f6 in terms of the integration
variables are as follows:

eic65S f6q

3
e2 iwD Y f6 , f6

2 5 f 21~q/3!26
2

3
f qcosw.

~34!

One can check by inspection that Eq.~33! is symmetric in
the indicesn2 ,n28 andn3 ,n38 , and that matrix elements are
real for all sets of the quantum numbers$nj%,$nj8% compat-
ible with our choice of the polynomialsPL,M , Eqs.~9! and
~10!. Matrix elements of the operatorsV̂2h and V̂3h can be
written by analogy with Eq.~33!.

Equations~25! and ~33! for the HamiltonianĤ and Eqs.
~14! and ~21! for the matrix B̂ determine completely the
Schrödinger equation~11!.

IV. ENERGY SPECTRUM

For k50 the operator of the anyon-hole interactionV̂ah
becomes diagonal in the angular momentumL. Therefore,
the Schro¨dinger equation~11! is also diagonal inL since

V̂aa andB̂ are diagonal inL for arbitraryk. It was shown in
Sec. II that for each value ofL such thatL<5 or L57 there
exists a single eigenfunction, and it does not depend onh.
For these values ofL the equations of Sec. III immediately
give the energies ofk50 states. When the number ofPL,M
polynomials with a given value ofL becomes two or more,
equations of Sec. III give the coefficients of secular equa-
tions of the second, third, etc., order which determine theh
dependent eigenfunctions and eigenvalues.

The order in whichk50 levels are arranged changes with
increasingh. The main regularities can be understood using
classical arguments. In the classical limit, which is achieved
for a large exciton size, the exciton ground state takes the
shape of an equilateral triangle with anyons in the vertices
and a hole in the center. The anyon-anyon distance in this
triangle, r 12, found from the minimum of the electrostatic
energy, is equal to

r 125A3/2h. ~35!

It will be shown below that triangular configurations are de-
scribed by the polynomialsP6M ,M andWP6M ,M . A straight-
forward calculation based on Eqs.~3!, ~9!, and ~10! shows
that a mean-square value of the interanyon distance in these
states is equal to
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^r 12
2 &56~L1213a!. ~36!

Comparing Eqs.~35! and ~36! one finds that

r 12;h;L1/2 ~37!

for L@1. Therefore, with increasingh both the sizer 12 and
the angular momentumL of the exciton ground state in-
crease. This means that the order of the energy levels
changes, and the bottom state possesses the angular momen-
tum L;h2. Since fork50 the Hamiltonian is diagonal in
L, the level interchange occurs usually as a level crossing.

In Fig. 1 the ground-state energy is plotted as a function
of h for two values of the statistical charge,a521/3 and
a50, by curvesA andB, respectively. It is seen that both
curves show the same gross features, including increase of
the ground-state energy and the angular momentum withh.
However, fine details are very different in theh,2 region.
We do not discuss these differences in more detail since they
are expected to be sensitive to anyon form factors,34–36

which were not taken into account in our calculations. How-
ever, since curvesA andB practically coincide forh*2, we
believe that in this region the AEM provides reliable results.
In what follows we restrict ourselves to this region and ne-
glect the statistical charge, i.e., consider the bosonic model,
a50. All data below are presented for this model. It was
shown in Sec. III A, Eq.~23!, that fora50 matrix elements
Mmm8

(a) (t) can be expressed in terms of elementary functions.
This fact permits one to reduce the threefold integral of Eq.
~33! to the onefold integral:

^LMkuVahuL8M 8k&

52E
0

`

exp(23q2/22qh)JuL2L8u~kq!QLM ,L8M8~q!dq,

~38!

where functionsQLM ,L8M8(q), real and symmetric in indices,
are polynomials inq. The lower polynomials are of a simple
form:Q00,0051, Q20,005q2/2, Q20,20512q21q4/4. Appli-
cation of Eq.~38! highly simplifies all computations.

For comparison, in Fig. 1 is also shown the energy
«cl52(2/3)3/2/h calculated in the classical limit, Eq.~35!. It
is seen that in the regionh&4 it differs considerably from
the exact quantum data.

Since for kÞ0 the termV̂ah is nondiagonal inL, the
dispersion law«(k) can be found only numerically. In Fig. 2
it is shown for two values ofh. The basis of polynomials
used in computations included 22L-even polynomials with
L<18, Eq.~8!, and 22L-odd polynomials withL<21, Eq.
~9!. The following regularities are distinctly seen. As argued
above, the levels with higherL values draw closer to the
spectrum bottom with increasingh. The level interchange
manifests itself as avoided level crossings. The level splitting
near these crossings increases withk and decreases with the
differenceuL2L8u. These regularities can be understood if
one takes into account that the Bessel function in the inte-
grand of Eq. ~38! shows the power-law behavior,
JuL2L8u(kq)}(kq)

uL2L8u, in the smallk region. In particular,
for uL2L8u51 the interaction of two branches can result in
the negative exciton effective mass for smallk values. Nega-
tive exciton dispersion can appear even in the ground state as
can be seen in Fig. 2~a!. It is interesting to mention that
exciton dispersion neark50 is always positive in the two-
semion problem.11

The above results show that the charge fractionalization
determines both~i! the basic multiple-branch structure of the
exciton energy spectrum and~ii ! numerous specific features
of the spectrum including theh dependence of the arrange-
ment of the branches, avoided branch intersections, etc.

V. ELECTRON DENSITY

The distribution of the electron density,Dl(r ,k), around
a hole can be found from the equation

Dl~r ,k!5K 13(j51

3

d~r j2rh2r !L
lk

, ~39!

where the averaging is performed over the quantum state
(l,k), where l numerates exciton branches. The density
Dl(r ,k) is exactly the quantity which~i! permits one to
check reliability of the model and in which~ii ! the specific

FIG. 1. Ground-state energy,«(k50), plotted versus separation
h between electron and hole confinement planes.A andB — sta-
tistical chargesa521/3 anda50, respectively.A — triangles
show the points where the angular momentumL changes from zero
to 2, and then to 6 and 9. For the quantum states separated by full
dots on curveB see Fig. 4.C — classical limit.

FIG. 2. Anyon exciton dispersion law«(k) for two values of
h. For h52, the negative dispersion arises because of the mutual
repulsion ofL52 andL53 branches. Level splitting near avoided
crossings becomes tiny with increasingh. Numbers showL values.
h in units of l .
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pattern of the charge fractionalization manifest itself in a
rather spectacular way. It is one of the basic criteria of the
AEM that the excess charge density is small compared with
the density of the IQL,n/2p, for n,1/2 @and compared with
(12n)/2p for n.1/2#. Therefore, forn51/3 andn52/3
IQL’s one can expect that the AEM becomes applicable only
whenDl!1/6p'0.05. This criterion will be applied in what
follows.

The explicit expression forDl can be obtained in the
same way as Eq.~38!. Indeed, the operatorV̂ah and the op-
erator of the electron density of Eq.~39! depend on the same
arguments,r j2rh . Therefore, the integrands differ only in
the substitutionVah(q) by the Fourier image ofd(r j2rh).
The final expression is

Dl~r ,k!5
1

2p (
LM ,L8M8

cos@~L2L8!u#3E
0

`

dqq

3exp~23q2/2!JuL2L8u~qur2du!

3QLM ,L8M8~q!x̄L8M8
l

~k!xLM
l ~k!, ~40!

where u is the angle between the vectorsd2r and d.
Dl(0,k) shows the electron density on the hole.

For k50, the density distributionDl(r ,0) is shown in
Fig. 3 for L<6. In this casel can be completely identified
by the indexL for L<5, but there are two functions for
L56. ForL<5 the energies, the eigenfunctions, and there-
fore also the densitiesDL , do not depend onh. The L50
state has a high density;D0(0,0).0.05. Therefore, the shape
of the curveD0(r ,0) cannot be reliable. Nevertheless, it is
remarkable that numerical calculations performed in the
spherical geometry forn51/3 ~Refs. 12, 16, 25, 38! and
n52/3 IQL’s ~Refs. 17! convincingly show that forh&2 the
spectrum bottom is made by theL50 exciton having the
electron density which is very close to the Fermi limit,
1/2p.16,20 FunctionsDL,M become broader with increasing
L, and DL,M(0,0) decreases. The stateL53 from which
L-odd polynomials originate is especially remarkable be-
cause it is the first to show a craterlike density distribution
with a minimum atr50. This minimum is a signature of the

charge fractionalization, since for ordinary magnetoexcitons
the density shows a maximum atr50. We will discuss the
properties of this state in more detail in Sec. VI. ForL56
there are two eigenfunctions; they depend onh. In Fig. 3
they are shown forh50; the lower-energy component is
drawn by a solid line.

Figure 4 shows the energy«(0) and the densityD(0,0)
for bottom states as a function ofh. It is seen from the figure
that for h*2 the density falls well below its critical value
0.05, which supports our above conjecture, Sec. IV, that the
AEM provides reliable results forh*2. With increasingh
the angular momentum in the bottom state,L, also increases.
It is a striking feature of the data that only states with
L53n, n>2, reach the spectrum bottom~we cannot make
definite conclusions about theL53 state since it does nor
reach the bottom fora521/3 anyons, Fig. 1!. The bottom
states described byL-even andL-odd polynomials alternate.
We attribute the periodicity inL to the superselection rule
originating from the combination of the space and permuta-
tion symmetry. Indeed, we observe this periodicity in the
semiclassical region where the quantization rule includes an-
gular integration between two exchange points separated by
the angle 2p/3 rather than the usual 2p integration.39

PolynomialsPL,M with L56M play a special role in the
class ofL-even polynomials. All of them obey the hard-core
constraint. Indeed, the polynomialP6M ,M( z̄12,z̄23,z̄31) van-
ishes asz̄j l

L/3 each time when one of its arguments,z̄j l , turns
into zero. From the standpoint of the general theory,31 hard-
core functions are the only ‘‘legitimate’’ wave functions of
an anyon system. The exponentL/3 is the maximum order of
the zero for a wave function with the angular momentum
L, and this maximum is achieved only forP6M ,M polynomi-
als. Therefore, Coulomb repulsion is strongly suppressed for
these polynomials. PolynomialsWP6M ,M play a similar role
in the class ofL-odd polynomials. It is a remarkable fact that
in the h*2 region all bottom states are eitherP6M ,M or
WP6M ,M polynomials.

FIG. 3. Axisymmetric electron density distributionsDL(r ,0) for
ak50 exciton for the states withL<6. TwoL56 states are shown
for h50; the density distribution in the lower state is shown by a
solid line. Numbers showL values.

FIG. 4. The energy«(0) and the electron densityD(0,0) at the
point rh where the hole resides plottedvs h for the ground state of
an exciton withk50. The ground-state energy of an anyon exciton
is shown by a solid line; the dots on it show the positions of the
intersections between the energy levels with differentL values. For
comparison the energy of a conventional magnetoexciton«me(h)
with k50 is shown by a dashed line. Numbers near theD(0,0)
curve show theL values. Only the states withL53m reach the
spectrum bottom~as an exclusion the stateL52 appears as a bot-
tom state in an extremely narrow region of theh values!.
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Using the polynomialsP6,M , M50 and 1, as an example,
we can follow the way in which hard-core states move to the
spectrum bottom whenh increases. For smallh values the
low-energy component of theL56 doublet has a pro-
nounced maximum nearr50 as seen in Figs. 3 and 5. For
h,2 the low-energy component is close toC6,0; for h50
the overlap is 0.96. Forh'2 wave functions of both com-
ponents are strongly mixed, and they show similar distribu-
tions of the density, Fig. 5. Forh.2 the functionC6,1 wins
the competition. Forh53 it dominates in the low-energy
state; the overlap is 0.97. The densityD6M ,M(r ,0) has a
single maximum for each value ofM . One can obtain a
simple analytic expression for the position of the maximum
by averaging the density overrh . This latter function,
D̃L,M(r ,0), reaches the maximum atr L5A2L, and the maxi-
mum ofDL,M(r ,0) is very close to this value. More detailed
information on the nature of thek50 bottom states comes
from the correlation functions which are discussed in Sec. VI
below.

For comparison, in Fig. 4 is also shown theh dependence
of the energy of a conventional magnetoexciton,«me(h),
with the momentumk50. In the limit h→0 this energy
exactly coincides with the energy of an exciton in the many-
electron system because of the hidden symmetry inherent in
the problem; see Refs. 14 and 19 and references therein. In
the region ofh!1 the accuracy of the AEM is low. How-
ever, it increases forh*2 when the charge fractionalization
becomes important. In this region«me(h) follows the usual
Coulomb law, «me(h)'21/h, whereas for many-electron
systems the dependence of the exciton binding energy onh
also is close to a Coulomb law, but the numerator is consid-
erably less than 1 since the electron density distribution has a
width abouth. The magnetoexciton and AEM approaches
are exact in the opposite limits. The results should be
matched in the intermediate region ath'2.

Above in this section we discussed the electron density
distribution only fork50 anyon-excitons. The charge frac-
tionalization manifests itself for these excitons in the crater
shape ofDl(r ,0). However, the most spectacular manifesta-
tion of the charge fractionalization can be expected in the
large k region,k*1. Indeed, the exciton dipole momentd
differs fromk only by the rotation byp/2, Sec. II. Therefore,
one can expect that with increasingk the electron density
splits into bundles, their charges being multiples of 1/3. The
splitting of the electron shell into two well separated quasi-
particles has been observed previously for a two-semion
exciton.11 For a three-anyon-exciton the patterns are much
more impressive. For the bottom state, they are shown in Fig.
6 for h53 when the criterion of the large electron-hole sepa-
ration is fulfilled. The distribution which is cylindrically
symmetric fork50 transforms with increasingk into a dis-
tribution with a single split-off anyon (k52 and 3!. Two
anyons constituting the exciton core show a slight but dis-
tinct splitting in a perpendicular direction. This core can be
considered as an anyon ion. The core changes its shape with
k but remains stable in a wide range ofk. Finally, for rather
largek values, it splits in thed direction as it is seen in the
last figure,k56. The asymmetric density distribution fork
Þ0 arises completely due to the admixture ofL-odd poly-
nomials to theL56 state.

The well-outlined profiles of the electron density seen in
Fig. 6 may be smeared by the oscillatory screening inherent
in IQL’s.40 Nevertheless, the basic pattern of the charge
separation in an exciton should strongly influence thek de-
pendence of the magnetoroton-assisted recombination pro-
cesses since charge-density excitations are left in a crystal
afterwards.

VI. PAIR-CORRELATION FUNCTIONS

One can see in Fig. 3 that theL53 state is the first state
which shows a craterlike shape of the densityD(r ,0). This
shape indicates the existence of the anyon substructure of an
exciton as it was argued in Sec. V. It is typical of all bottom
states withL>6. In this section we compare properties of
C3,0 andC6,1 states and show that despite the similarity in
the shape of the density, they differ critically in the shape of
the radial pair-correlation functionw(r ).

It is convenient to use the square of the wave function
C of Eq. ~3! averaged over the hole coordinate. Using Eqs.

FIG. 5. Electron density distributionD(r ,0) for theL56 states
with k50 for three values ofh. The density in the lower energy
state is shown by a solid line. Consecutive numbers,l, of the en-
ergy levels are shown near the curves.
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~3! and~9! and performing Gaussian integration overrh , one
can write the following equation for the averagedC6M ,M
function:

uC̃6M ,M~ z̄12,z̄23,z̄31!u2}~r 12r 23r 31!
4M

3expH 2
1

18
~r 12

2 1r 23
2 1r 31

2 !J .
~41!

Choosingr 12, r 13, andc, wherec is the angle between the
vectors r12 and r13, as independent variables, rewriting
uC̃6M ,Mu2 in terms of these variables, and looking for the
maximum first over cosc and then overr 12 and r 13, one
finds that the maximum ofuC̃6M ,Mu2 is reached for a con-
figuration of an equilateral triangle with

r 12
2 5r 23

2 5r 31
2 56L. ~42!

In the semiclassical limit,L@1, this result coincides with
Eq. ~36!.

To find the most probable configuration for theC3,0 state
it is convenient to work inj variables, Sec. II, and perform
averaging overrh . Simple calculation shows that

uC̃3,0~ z̄12,z̄23,z̄31!u2}j1
2j2

2j3
2expH 2

1

6
~j1

21j2
21j3

2!J .
~43!

The maximum of this expression under the constraint of Eq.
~7! can be found in the same way as for Eq.~41!. Finally,
one recovers an equilateral triangle configuration with
r 12
2 5r 23

2 5r 31
2 518. This result coincides with Eq.~42! for

L53.
Because arbitraryL-odd polynomials have the form

PL,M5WPL23,M , Eq. ~10!, and the equilateral triangle con-
figuration is optimal for each of the multipliers, it is optimal
also for their product,PL,M . Therefore, the most probable
configuration has the same shape of an equilateral triangle
both forL-even andL-odd-states.

To reveal a striking difference in the properties ofC6,1
andC3,0 states, one can calculate the radial pair correlation
functionsw(r ):

w~r 12!5E uC~R,r,$z̄j l %!u2d~r121r231r31!dRdrdr23dr31.

~44!

SubstitutinguCu2 from Eq. ~3! results in

wL,M~r 12!5
1

~2p!2
E dqE E dr23dr31uPL,Mu2

3expH 2
1

18(j l r j l
21 iq•~r121r231r31!J .

~45!

Straightforward calculation shows that

FIG. 6. Electron density distri-
bution in an anyon exciton for dif-
ferent values ofk. A hole is at the
origin; thex axis is chosen in the
d direction. The center of the elec-
tron density distribution is at
x5k, y50. The data were ob-
tained with the 44 polynomial ba-
sis,L<21; data for the 70 polyno-
mial basis,L<27, also show the
change in the shape of the exciton
core for largek values.x, y, and
h in units of l ; k in units of l21;
density in units ofl22.
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w6,1~r !5
r 2

192p
$11 1

2 ~r /6!4%exp~2r 2/12!, ~46!

w3,0~r !5
1

48p
$11 1

6 ~r /2!4%exp~2r 2/12!. ~47!

Both functions are shown in Fig. 7. The functionw6,1(r ) has
a hard-core behavior, whereasw3,0(r ) does not vanish at
r50. On the contrary, it reaches its absolute maximum at
this point. The second maximum is by the factor 0.97 lower
than the main one. Therefore, functionC3,0 violates the
hard-core constraint. Of course, all bottom-stateL-odd poly-
nomials withL>9 show a hard-core behavior.

The above conclusion on the triangular shape of the most
probable configuration of theC3,0 exciton implies existence
of the 120° correlations in the density correlation function.

To investigate these correlations it is convenient to work
in the jj variables. The two-particle correlation function
w3,0(w) depending on the anglew between vectorsj1 and
j2 can be written as

w3,0~w!}E dj1dj2dj3uC̃3,0~j1 ,j2 ,j3!u2

3d~j11j21j3!d~j1j2̂2w!

}E
0

2p

dj1dj2~j1j2!
3~j1

21j2
212j1j2cosw!2

3exp$2~j1
21j2

21j1j2cosw!/3%. ~48!

The d function takes into account the constraint of Eq.~7!,
andj1j2̂ stands for the angle betweenj1 andj2 expressed in
terms of the coordinates of these vectors. Integration over the
variablesjj in Eq. ~48! results in the averaged correlation
function; the main contribution comes from the area
j1
2'j2

2'j3
2'6 whereuC̃3,0u2 reaches the maximum. The last

integral can be performed in polar coordinates,
j15jcos(u/2), j25jsin(u/2), 0<u<p, and the normalized
functionw3,0(w) takes the form

w3,0~w!5
81

8pE0
p

du
sin3u~11sinucosw!

~21sinucosw!5
. ~49!

The integration overu can be performed analytically; how-
ever, the final expression is rather cumbersome. The result is
plotted in Fig. 8. Two distinct maxima in the vicinity of
2p/3 and 4p/3 reveal 120° correlations in theC3,0 state.
The maxima are shifted from the angle 2p/3 since the func-
tion C3,0 vanishes for the collinear configuration of anyons,
j152j2 , j350.

Apalkov and Rashba41 have found the density-density
correlation function,w3,0

dd(w), for the n52/3 IQL with a
single extra electron. Calculations were performed in the
spherical geometry for the (LQP)max2LQP53,
(LQP)z5LQP quantum state. The quantity (LQP)max2LQP ,
which is the difference between the three-quasiparticle angu-
lar momentum in the spherical geometry,LQP , and the
maximum value of this momentum, should be compared to
the exciton angular momentumL.16,17 It is convenient to
introduce mean values

r1~q!5E uC~v,v2 , . . .vN!u2dv2 . . .dvN ~50!

and

r2~v,v8!5E uC~v,v8,v3 , . . .vN!u2dv3 . . .dvN .

~51!

Herevj (q,w) are unit vectors designating the positions of
the electrons on the sphere. Electron density depends only on
the polar angleq and equalsn1(q)5Nr1(q), whereN is
the number of electrons. If one introduces the deviation,
Dn(v)5n(v)2n1(q), of the density from its mean value,
the density-density correlation function can be written as

w3,0
dd~q,w2w8!5^Dn~q,w!Dn~q,w8!&

5 1
2N~N21!r2~q,w2w8 !2n1

2~q!.

~52!

In Eq. ~52! the polar angles of the vectorsv and v8 are
chosen equal,q5q8. Therefore, the correlation function,
w3,0
dd(q,w), is the function of the azimuthw and depends on

FIG. 7. Radial anyon pair correlation functionw(r ) for the
statesC6,1 andC3,0; k50.

FIG. 8. Normalized anyon pair correlation functionw3,0(w)
found in the anyon exciton model;k50.
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q as a parameter. In Eq.~52! the singular term proportional
to d(v2v8) is omitted, as usual, since it makes no contri-
bution to w3,0

dd for vÞv8. The results of calculations are
presented in Fig. 9 for three values ofq. The value of
q50.8 is close to the maximum ofn1(q).

Since the anyon exciton wave functionC3,0 does not de-
pend onh, the data of Figs. 8 and 9 can be compared. There
is a striking similarity between them. All three curves in Fig.
9 show flat but distinct maxima near the same values of the
argument,w52p/3 and 4p/3. These maxima are much flat-
ter than the maxima in Fig. 8. This difference can be attrib-
uted to the smearing originating from the quasielectron form
factors. Nevertheless, there is no doubt that it is the three
quasielectron substructure of the many-electron stateL53
which manifests itself in 120° correlations.

Therefore, the stateC3,0 shows properties intermediate
between an anyon exciton and tight exciton. Unfortunately,
reliable calculation ofwdd(q,w2w8) cannot be performed
for the (LQE)max2LQE56 states since their size exceeds the
accessible sphere size.

VII. COMPARISON WITH FINITE-SIZE CALCULATIONS

In this section we make a comparison of the AEM with
computational results for excitons in the spherical geometry.
Three-anyon excitons are expected to appear in two charge
conjugate IQL’s,n51/3 andn52/3. Their properties in the
semiclassical region,h@1 and L@1, should be identical.
For intermediateh andL values, excitons of these two liq-
uids are expected to show rather different properties. The
data obtained by finite-size computations16,17 substantiate
these expectations.

There are different reasons whyn51/3 andn52/3 exci-
tons are expected to have different properties in the interme-
diate region. A simple electrostatic reason is a different non-

linear screening of the unit positive charge by these two
IQL’s. The effect of the screening on the exciton energy
spectrum was discussed in Ref. 42. However, there are also
different mechanisms resulting in the difference in the prop-
erties of these excitons. They are related to rather different
form factors and different statistical properties of the
quasielectrons of then51/3 andn52/3 IQL’s. Neglecting
spin effects, we can consider electrons as spinless fermions.
Then, because of the charge symmetry, the properties of the
quasielectrons of then52/3 IQL are identical to the proper-
ties of the quasiholes of then51/3 IQL. Therefore, we will
start with a comparative study of quasielectrons and quasi-
holes of then51/3 IQL.

The form factors of charged particles of then51/3 IQL
were investigated in a number of papers. The data are sum-
marized in Refs. 34–36. It is known that a quasihole has a
narrow profile with a radius up to two magnetic lengths. The
density decreases away from the center of a quasihole nearly
monotonically. In contrast, a quasielectron has a pronounced
density dip at the center, the density maximum at about two
magnetic lengths, and the radius of about four magnetic
lengths. Therefore, the model of point anyons developed
above matches much better the excitons of then52/3 IQL
than the excitons of then51/3 IQL.

Another aspect of the problem is related to statistical
properties of anyons. In the AEM the effect of the fractional
permutational statistics of anyons was taken into account by
including the factor) j l ( z̄j l )

a into the Halperin pseudo-wave-
function CL,k , Eq. ~3!. It was shown in Sec. IV that the
effect of this factor can be neglected forh*2, i.e., in the
region where the AEM is expected to be valid. However, one
should also take into account the nontrivial populational sta-
tistics of anyons. This can be done using the theory of com-
posite fermions43 and the approach to the dimensionality of
the quasiparticle space based on exclusion statistics.44,45

Bosonic Haldane dimension,dQP
B , is an effective number of

the single-quasiparticle states defined in such a way that the
usual Bose distribution

WB~dQP
B ,NQP!5~dQP

B 1NQP21!!/ ~dQP
B 21!!NQP!

results in the correct number of states in the Hilbert space of
NQP quasiparticles,W(NQP)5WB(dQP

B ,NQP). The number
of quasiparticle states,W(NQP), can be found by counting
the number of states in the Hilbert space of composite
fermions.28,43 If quasiparticles obey Bose statistics,dQP

B does
not depend onNQP . By counting the composite fermion
number of states in the spherical geometry, it was shown in
Ref. 17 that forn51/m, m is an integer, the bosonic dimen-
sion of quasiholes equals

dQH
B 5N11, ~53!

and the bosonic dimension of quasielectrons equals

dQE
B 5~N11!22~NQE21!. ~54!

HereN is the number of electrons. These equations are con-
sistent with the diagonal coefficients of the exclusion statis-
tics of quasiholes and quasielectrons (1/m and 221/m, re-
spectively!, found by different authors.46–48

FIG. 9. Electron density correlation functionw3,0
dd(q,w) for the

n52/3 IQL with a single extra electron (N515, the flux
2S521). The correlation function is plotted as a function of azi-
muth w for three values of the polar angleq 5 0.6, 0.8, and 1.0.
q50.8 is close to the maximum of the electron density. Correla-
tions between quasielectrons manifest themselves in the maxima
nearw52p/3 and 4p/3. @Apalkov and Rashba~Ref. 41!.#
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Equations~53! and ~54! indicate that quasiholes show a
bosonic behavior, while quasielectrons are a subject of the
constraint which is even more restrictive than the constraint
imposed by Fermi statistics. These conclusions were
supported17 by counting the maximum value of the angular
momentum, (LQP)max, for the system ofNQP quasiparticles.
It is equal to

~LQH!max5NQHN/2 ~55!

for NQH quasiholes, and to

~LQE!max5NQEN/22NQE~NQE21! ~56!

for NQE quasielectrons. SinceN/2 is the angular momentum
of a single quasiparticle,21 Eq. ~55! confirms the bosonic be-
havior of quasiholes, whereas Eq.~56! confirms the exist-
ence of the restriction on the population of single-
quasiparticle states by quasielectrons. Heet al.27 were the
first to discover this restriction by means of numerical calcu-
lations and to propose Eqs.~53! and~54!. They attributed the
restriction to the hard-core constraint for quasielectrons hav-
ing a dynamical~short-range repulsion! rather than statistical
origin.

For a macroscopic system,N@1, Eqs.~53! and~54! give
coinciding results, dQE

B 'dQH
B 'N, in the dilute limit,

NQP!N. However, in an exciton the quasiparticles are con-
fined inside the volume aboutpr 2, where r is the exciton
radius. Therefore, the second term of Eq.~54! which signi-
fies the deviation from the bosonic behavior of quasielec-
trons, can be of importance.

Quasielectrons of then52/3 IQL are described by Eqs.
~53! and ~55!. Therefore, the population of single-
quasiparticle states obeys the Bose statistics, and Eq.~3! for
wave functions is absolutely adequate since it includes poly-
nomialsPL,M symmetrical in variablesz̄j . For this reason,
and also taking into account narrow form factors of
quasielectrons of then52/3 IQL, one can conclude that the
n52/3 IQL is the best candidate for comparison with the
AEM. We believe that the criterionh*2, established in Sec.
V by evaluating the densityDl(r ,0), is applicable to the
n52/3 IQL.

The situation is more involved for then51/3 IQL.
Quasielectrons in this case are described by Eqs.~54! and
~56!. One can apply Eq.~54! to the area inside an exciton
and order thatdQE

B >NQE53, which results inN>6. The
number of electrons inside an exciton can be evaluated as
N'pr 2/2p. Evaluating the exciton radiusr as r'r 12/A3
and using the classical equation~35!, one comes to the cri-
terion h*5. A wide quasielectron form factor imposes a
similar restriction onh. Since the reliable finite-size compu-
tations can be performed only forh&2, the prospects for a
quantitative comparison of the results obtained by both ap-
proaches seem less favorable for then51/3 IQL than for the
n52/3 IQL. However, we feel that the above rigid criterion
relaxes considerably when a qualitative description of the
spectrum-bottom states is concerned.

We are now in position to compare the basic results of the
AEM with the computational results for finite-size systems.
The basic statement of the theory of anyon excitons, that the
charge fractionalization results in a multiple-branch energy
spectra of excitons,11,22was confirmed by finite-size compu-

tations performed for bothn51/3 andn52/3 IQL’s. Actu-
ally, it provides the basic idea for representing the energy
spectra obtained in the spherical geometry for a discrete set
of L values in the form of exciton branches«l(k).

We begin with summarizing some results obtained in Ref.
17 by finite-size calculations for excitons of then52/3 IQL
and compare them with the results obtained in this paper in
the framework of the AEM. Classification of excitons in
terms of tight and anyon excitons is used, cf. Sec. I.

1. Number of exciton species. Anyon exciton is a bound
state of a three-quasielectron complex from the low-energy
~anyon! sector27,28and a hole. The angular momentum of the
exciton,L, is equal toL*5(LQE)max2LQE , whereLQE is
the angular momentum of the complex, and (LQE)max is the
maximum value of this momentum which can be found from
Eq. ~55!. Therefore, the number of exciton species is equal to
the number of the three-quasielectron complexes in the low-
energy sector, andL* should be compared to the exciton
angular momentumL of the AEM. Only a single three-
quasielectron complex exists if the angular momentumL*
equalsL* 5 0, 2, 3, 4, 5, or 7. The complexL*51 is absent
because composite fermions obey Fermi statistics. For
L*>6 the number ofL-even states increases by one~see
Fig. 1 in Ref. 17!.

These properties are in a complete agreement with the
classification of the polynomialsPL,M of Sec. II, Eqs.~9! and
~10!. TheL51 exciton is absent because of the constraint of
Eq. ~2!.

2. L50 branch. Despite the fact that theL50 exciton
appears, according to its quantum number, as the first state in
the series of anyon excitons, it possesses rather special prop-
erties. This exciton originates from theL*50 three-
quasielectron complex, which is quite dense, and the energy
of this complex is high. It is nearly the same as the energy of
some states from the next sector. These data imply that the
L50 anyon exciton actually merges with theL50 tight ex-
citon. Because of these arguments, theL50 exciton was
assigned in Ref. 17 as a tight exciton rather than an anyon
one. This assignment is supported by an independent argu-
ment.L50 excitons of then52/3 andn51/3 IQL’s show
nearly identical properties, whereas the anyon exciton as-
signment of the latter entity is excluded by the symmetry
arguments based on the composite fermion theory.16

The shape of theL50 exciton density distribution of Fig.
3 is in agreement with this assignment. The magnitude of
D0(0,0) exceeds the maximum density compatible with the
AEM; see the discussion at the beginning of Sec. V.

3. Electron density. For a system with a single extra elec-
tron against a background of then52/3 IQL, the electron
density has a pronounced maximum atr50 if L*50, 2, or
4. TheL*53 state is the first state with a craterlike electron
density distribution having a density dip atr50 ~see Fig. 2
in Ref. 17!. The crater shape of the density indicates the
charge fractionalization.

These data are in a qualitative agreement with the electron
density distributions of Fig. 3 for excitons having angular
momentaL 5 0, 2, 3, and 4. The general shape of the curves
is the same, but there are differences in the magnitudes of the
densities atr50. Since wave functions of these excitons do
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not depend onh, electron densities for the exciton and three-
quasielectron states with the angular momentaL5L* , re-
spectively, can be compared.

4.Bottom states. L50 exciton remains the bottom state in
the whole areah&2. L52, L53, andL56 excitons move
down to the spectrum bottom, but they start competing with
the L50 exciton only for h'2.5 when the accuracy of
finite-size calculations becomes ambiguous. TheL54 exci-
ton is also seen in the low-energy part of the spectrum but
never reaches the spectrum bottom.17,41

These data are in agreement with Fig. 4 where the se-
quence of the first bottom states includesL50, 2, 3, and 6.

5. Charge fractionalization: density correlation function.
It was shown in Sec. VI thatw3,0(w) reveals 120° correla-
tions both for the many-electron and AEM wave functions.
These correlations signal the charge fractionalization.

6. Intrinsic angular momenta of anyons. There is a con-
vincing one-to-one correspondence between the excitons of
many-electron systems having angular momentaL<6 in the
spherical geometry and the excitons of the AEM with the
same values of thez projections of the angular momentum.
Therefore, our data provide no indication of the existence of
the intrinsic angular momenta of anyons.49 On the contrary,
our data are in agreement with the recent conjecture on the
absence of anyon spins in the plane limit.50

The AEM predicts identical exciton spectra for the
n52/3 and n51/3 IQL’s. However, finite-size
calculations16,17 result in a rather different symmetry of the
low-energy exciton states forh&2. The exact classification
of the exciton states based on the composite fermion theory
shows that onlyL53 andL>5 anyon excitons can exist in
then51/3 IQL.16 This conclusion is supported by numerical
data. Therefore, a challenging question arises: Why are
L52 and L54 excitons of the AEM missing from the
many-electron spectra of then51/3 IQL? We argue that
these excitons are excluded because of their small bosonic
dimension which cannot accommodate three quasielectrons.

In what follows we compare the results of the finite-size
computations of Ref. 16 for then51/3 IQL with the AEM
data.

1. Excluded states. Finite-size calculations and composite
fermion theory show that anyon excitons of then51/3 IQL
can only possess angular momentaL53 andL>5. All ex-
citons withL50, 1, 2, and 4 can only appear as tight exci-
tons. TheL50 tight exciton forms the spectrum bottom for
h&2, but there are no low-energyL52 andL54 excitons.

It seems probable that there can exist only one,L50,
tight exciton near the spectrum bottom. Therefore, it is nec-
essary to understand whyL52 and L54 excitons of
the AEM, which possess low-energies, do not appear as
anyon-excitons in many-electron systems. The criterion
dQE
B >NQE results in the minimum anyon-exciton radius
of rmin'2A3. It is seen in Fig. 3 that the criterionr*rmin is
violated forL52 andL54 excitons. Therefore, we attribute
the exclusion of theL52 andL54 exciton states from the
many-electron spectrum to the reduction of the bosonic di-
mension of the quasielectron space because of the second
term of Eq.~54!.

2. Bottom states.The tightL50 exciton remains the bot-
tom state up toh'2 when theL53 anyon exciton reaches

the bottom.L55 andL56 excitons start to compete with
theL50 exciton only forh'3 when the accuracy of finite-
size calculations is low.

The data are in agreement with Fig. 4.
3. Electron density distribution fork50 excitons. Tight

excitons have narrow electron density distributions. The den-
sity of theL50 exciton is sharply peaked atr50. L53 and
L55 anyon excitons show pronounced density dips at
r50 and two maxima of the density. It was hypothesized16

that ther50 dip originates from the dip in the quasielectron
form factor, whereas the two-maxima shape indicates the
existence of a two-anyon core and one split-off anyon. It is
remarkable that the density distribution in theL53 and
L55 excitons only weakly depends onh.

Weakh dependence of the density distribution forL53
and L55 excitons is in agreement with the existence of a
single polynomialPL,M for L<6, Sec. II. Splitting of the
exciton shell of ak50 exciton cannot be described within
the framework of the point-anyon AEM.

4. Dependence of the density distribution onk. Whenk
increases, ther50 dip in the electron density of theL53
exciton transforms into a narrow maximum, and the density
distribution acquires a three-maxima shape. It was
proposed16 that in this region ofk values an exciton consists
of a single-anyon core and a two-anyon shell.

Splitting off of anyons from the core with increasingk is
in a qualitative agreement with Fig. 6.

VIII. CONCLUSION

The model of anyon exciton developed and solved in the
paper includes three quasielectrons~anyons! and one hole. It
is applicable to exciton spectra of two charge conjugate
IQL’s, n51/3 andn52/3, and is exact in the limit of a large
separation between electron and hole confinement planes,
h@ l .

Anyon excitons possess multiple-branch energy spectra,
«l(k). An exciton is described by a 2D momentumk and
two internal quantum numbersl which numerate exciton
branches. One of these quantum numbers can be chosen as
the exciton angular momentum,L, in thek50 state.

A full set of basis functions was chosen with a proper
account of the magnetic translational symmetry and permu-
tational symmetry. The functions include two types of poly-
nomials symmetric in anyon permutations; one of them, ap-
parently, was considered for the first time. Analytic
expressions for all matrix elements were derived. As a result,
exact expressions for the energy spectrum of a four-particle
system were found fork50. All exciton states with even
angular momentaL,6 and odd momentaL,9 are nonde-
generate, and their wave functions are completely deter-
mined by symmetry requirements. This property manifests
itself in finite-size data in a weakh dependence of the elec-
tron density distribution. Properties ofkÞ0 excitons were
investigated by numerical solution of the Schro¨dinger equa-
tion.

The AEM is not applicable for smallh values,h&2l .
However, the analysis of the internal criteria of the AEM and
comparison with the finite-size data show that it gives satis-
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factory results forh'2l , especially for excitons of the
n52/3 IQL. Finite-size computations which are reliable for
h&2l , and the AEM, whose accuracy increases withh, con-
stitute two supplementary approaches which match at
h'2l . According to the AEM, exciton states with the angu-
lar momenta obeying the superselection ruleL53m, where
m>2 is an integer, form the sequence of the bottom states
for h*2l . All these states are hard-core states, i.e., their
wave functions turn into zero if any two of the anyon coor-
dinates coincide. The equilateral anyon configurations are
the most probable ones. Angular momentaL of the bottom
states increase ash2, and the size of these states ash. The
tight L50 state is the bottom state forh&2l , whereas the
L53 state, which possesses the properties of both anyon and
tight excitons, can reach the bottom forh'2l .

Anyon substructure of excitons manifests itself in their
different properties. First, the multiple-branch energy spec-
trum originates because of the existence of the internal de-
grees of freedom. Second, fork50 excitons a craterlike
shape of the electron density distribution with a pronounced
dip near the hole signals the existence of the charge fraction-
alization. Third, 120° correlations in the electron density
were found both in the framework of the AEM and in finite-
size data. Fourth, forkÞ0 excitons a spectacular splitting of
the electron density into bunches provides a direct manifes-
tation of the fractional charge substructure.

AEM results in identical low-energy spectra for the exci-
tons of then51/3 andn52/3 IQL’s. This result is definitely
correct in theh@ l limit. However, finite-size data suggest
that in the intermediate region,h' l , the n51/3 IQL pos-
sesses less anyon-exciton branches than then52/3 IQL. Fol-
lowing Ref. 17, we attribute this phenomenon to the differ-
ence in the populational statistics of the quasielectrons of the
charge conjugate IQL’s. Anyon statistics enters into the
theory in two ways. First, through the fractional-power fac-
tors in the wave function; they ensure correct interchanging
statistics. Second, through the populational statistics. We
have shown that the first mechanism can be neglected for

h*2l , whereas the second one is of a critical importance in
the intermediate region. It follows from the composite ferm-
ion theory that quasielectrons of then52/3 IQL obey
bosonic populational statistics. As a result, quantum numbers
of anyon excitons found from the AEM and from the finite-
size data exactly coincide. In contrast, the bosonic dimen-
sion,dQE

B , of the quasielectron space of then51/3 IQL rap-
idly decreases with the number of quasielectrons,NQE . The
conditiondQE

B >NQE , written for the area about the exciton
size, eliminates the exciton states of the AEM with the an-
gular momentaL52 andL54 from the many-electron spec-
trum and brings in agreement the AEM and many-electron
data. Therefore, forh'2l the AEM supplemented with
anyon statistics arguments matches the many-electron data
for both IQL’s and sheds light on the origin of the difference
in their exciton spectra. The above arguments are rather gen-
eral and can be applied to different problems of the theory of
the bound states of several anyons.

Comparison of the AEM and finite-size data forn52/3
IQL provides no indication of the existence of the intrinsic
angular momenta~spins! of anyons.

In conclusion, the anyon exciton model unveils the gen-
eral pattern of the exciton spectra of IQL’s. It predicts the
properties of excitons in the largeh limit, h@ l , and is in
agreement with finite-size data in the intermediate region,
h'2l . The theory suggests that the regionh*2l is most
favorable for investigating the anyon substructure of excitons
in optical experiments.
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