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Analytic solutions of the quantum relativistic two-body problem are obtained for an interaction potential
modeled as a one-dimensional smooth square well. Both stationary and moving pairs are considered and the limit
of the δ-function interaction is studied in depth. Our result can be utilized for understanding excitonic states in
narrow-gap carbon nanotubes. We also show the existence of bound states within the gap for a pair of particles
of the same charge.
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I. INTRODUCTION

The analytical solutions supported by the square-well and
δ potentials for the Schrödinger equation make them among
the most widely used potentials in nonrelativistic quantum
theory and they have given fundamental insights in the
field of theoretical physics. In the relativistic case, potentials
containing discontinuities or kinks are often harder to treat,
since the relationship between the two components of the wave
function leads to the derivative of the potential entering the
wave equation. Nevertheless, the square well has been used
with great success to describe the single-particle phenomenon
in quasirelativistic one- and two-dimensional systems [1–3].
Here we provide a way to obtain the square-well solutions
for the quasi-one-dimensional two-body relativistic problem,
from the smooth analytically solvable barrier side, which
foregoes the need to consider special boundary conditions.
With the recent surge of Dirac materials [4] has come a
renewed interest in many quasirelativistic phenomena and
tabletop experiments now offer the possibility to check many
relativistic theories. Currently the experimental focus is on
attractive potentials to reveal the role of excitonic effects,
but we show that within the same formalism, quasi-one-
dimensional systems can also support bound states within
the band gap for two repelling particles. In light of the
ongoing extensive search of new quasiparticles in one- and
two-dimensional systems, such as Majorana fermions, our
result for binding same-charge particles is of significant
potential importance. Indeed, of special interest is the case
where both the electron-electron and the electron-hole pair
binding energy correspond to the middle of the band gap, as
it enforces electron-hole symmetry without the recourse to a
superconductor. This state is also energetically favorable as it
reduces the Fermi energy of a doped system.

Relevant examples of quasi-one-dimensional relativistic
systems, for which our results are applicable, are narrow-
gap carbon nanotubes and graphene nanoribbons. For these
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carbon-based nanostructures, the interaction potential between
a pair of particles may be considered as a quasi-one-
dimensional problem, averaged over the nanotube diameter or
nanoribbon width. For these systems, the interaction potential
is flat bottomed as it varies very little over the averaging scale.
In many carbon nanotubes devices, a metallic substrate is
used as the gate electrode to manipulate the Fermi level [5].
The presence of the substrate results in image charges, which
make the interaction decay faster than the widely employed
Coulomb potential [6], therefore the flat-bottom potential
is a reasonable interaction model for a carbon nanotube or
graphene nanoribbon above a metallic gate.

Charge carriers in graphene, a single monolayer of carbon
in a honeycomb lattice [2], are described by the same equation
used to describe two-dimensional massless Dirac fermions, the
Dirac-Weyl equation. By using a simple tight-binding model,
Wallace [7] demonstrated that a pristine graphene sheet has no
band gap and that the conduction and valence bands are linear
near the crossing points. A single-walled nanotube can be
thought of as a graphene sheet rolled into a seamless cylinder.
In the absence of curvature effects, within the frame of a
simple tight-binding model, this rolling can result in either
a semiconducting or metallic tube [8]. However, in reality all
but armchair nanotubes are metallic, since nonzero curvature
[9–13] gives rise to small band gaps that can be of the order of
a few meV, corresponding to terahertz (THz) frequencies. The
size of these gaps can be tuned by application of a magnetic
field along the nanotube axis [14–17]. The diverse applications
of THz radiation and its importance to fundamental science
makes finding ways to generate, manipulate, and detect it one
of the foremost challenges in modern applied physics [18].
One approach to fill the THz gap is to utilize narrow-gapped
single-wall carbon nanotubes [19]. These tubes can exhibit
strong THz optical transitions, which can be manipulated via
externally applied magnetic and electric fields, giving rise to
the possibility of utilizing them as highly tunable, optically
active materials in THz devices [13,19–24].

In semiconductor carbon nanotubes, the existence of low-
lying dark excitons drastically suppresses the photolumines-
cence efficiency [25–28]. However, in narrow-gap nanotubes
it has been demonstrated numerically that the binding energy
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of certain potentials scales with the band gap. Therefore,
undesirable effects due to dark excitons should not dominate
optical processes in narrow-gap nanotubes [29,30]. However,
the question of exactly how excitonic effects influence the
optical processes in narrow-gap nanotube is still an outstanding
problem. Excitonic effects in Dirac materials have been studied
using a variety of approaches such as the Bethe-Salpeter
method [31] as well as the two-body matrix Hamiltonian, based
on the low-energy expansion of the tight binding [29,32–35],
which will be the method employed in this study. Pair
formation has been studied in Dirac materials with effective
mass, such as gapped graphene [32,36–39], bilayer graphene
[40], and graphene in the trigonal warping regime [41–43].
However, there is still much debate concerning the existence of
coupled pairs in intrinsic graphene [34,44,45]. The two-body
problem has also been the subject of study in narrow-gap car-
bon nanotubes and graphene nanoribbons and some analytic
solutions have been found [29,30,46,47]. Numerical methods
have also been used to determine exciton bound states in metal-
lic carbon nanotubes subjected to a magnetic field [25]. Previ-
ous analytic results for finite potentials were limited to midgap
states, relying on numerical methods to determine the remain-
ing spectrum. Unlike previous studies, we calculate the full
positive-energy spectrum exactly for a flat-bottomed potential,
offering a powerful tool for modeling exciton energy levels.

The eigenvalues of a nonrelativistic particle, subjected
to a confining potential, are obtained by first solving
the Schrödinger equation and then imposing the appropri-
ate boundary conditions upon the wave function. For the
Schrödinger equation, the simplicity of the infinite square
well offers many insights into quantum effects and serves as
a useful approximation for more complex quantum systems.
Contrastingly, the solution of the particle in a box problem
in the relativistic regime is certainly nontrivial [48–54].
After solving the Dirac equation and requiring that all the
components of the spinor vanish at the wells edge, the only
permissible solution is the null wave function; the same is
true for the cylindrical infinite well [55–57]. Supplementary
boundary conditions may be employed to resolve this problem
such as introducing a mass going to infinity outside the well
[54,58,59]; such boundary conditions can relax the continuity
of the wave function at the well’s boundary yet preserve
the continuity of the probability density across the well.
However, different forms of quantum impenetrability may
lead to different physical consequences [49]. Similar problems
arise for the relativistic two-body problem. A discontinuous
potential imposes many restrictions on the spinor components
that are often very difficult to satisfy and demanding that
the wave function and its derivative are continuous at the
boundary results in the null wave function. To avoid the
boundary condition issues we consider a smooth piecewise
step potential that contains an adjustable parameter that can
be varied such that in some limit the potential transforms
into the Heaviside step function. Therefore, by symmetry one
can construct a truly-flat-bottomed potential, which can be
solved without the need of invoking supplementary boundary
conditions. Exact solutions of the Dirac equation not only are
useful in the analytic modeling of physical systems, but are also
important for testing numerical, perturbation, or semiclassical
methods. The smooth square well gives valuable insights

in the behavior of two Dirac-like particles interacting via a
short-range potential.

In what follows we consider excitons formed by relativistic
one-dimensional electrons and holes interacting via a flat-
bottomed piecewise potential. We first focus on excitons
possessing zero total momentum along the nanotube axis. A
solution to the two-body Dirac problem in the rest frame for a
smooth step potential is presented. The wave functions are ex-
pressed in terms of Heun confluent functions and all the spinor
components and their derivatives are continuous throughout
space. The solutions are then analyzed in the limit in which the
potential transforms into a true step potential and via symmetry
conditions the quantized energy spectrum of the square well
is attained. This potential is then used to model the interaction
potential between an electron and hole in a one-dimensional
Dirac system and the binding energy is shown to scale with
the band gap. The true square-well problem is then revisited.
By analyzing the wave function of the smooth square well, ap-
propriate boundary conditions are obtained for the true square
well. This enables one to obtain the energy spectrum of an
exciton possessing finite total momentum along the nanotube
axis. Finally, the model potential is analyzed in the δ-function
limit for both the nonrelativistic and relativistic regimes.

II. SOLUTION OF THE FLAT-BOTTOM INTERACTION
POTENTIAL PROBLEM FOR TWO DIRAC PARTICLES

In the absence of curvature effects, the single-particle
Hamiltonian of a nanotube may be obtained from graphene by
applying the periodic boundary condition along the direction
of the circumference. Curvature effects are equivalent to
introducing an effective flux along the tube, which is equivalent
to shifting the momentum of charge carriers in an unrolled
graphene sheet. Therefore, the effect of curvature and applied
magnetic fields are directly analogous to the one-dimensional
graphene problem where the curvature-induced gap plays the
role of fixed transverse momentum. In general, the single-
particle Hamiltonian of a narrow-gap carbon nanotube, of band
gap 2h̄vFκy , is given in the vicinity of the band-gap edge by
h̄vF(σxκ̂ + σyκy), where σx,y are the Pauli spin matrices, vF

is the Fermi velocity in graphene, and κ̂ is the operator of
the wave vector along the nanotube axis (x axis). The corre-

sponding eigenvalues are given by ε = ±h̄vF

√
κ2 + κ2

y . For an
electron-hole pair, the Hamiltonian can be written as [29]

Ĥ = h̄vF

⎛
⎜⎝

0 κ̂e − iκy −κ̂h + iκy 0
κ̂e + iκy 0 0 −κ̂h + iκy

−κ̂h − iκy 0 0 κ̂e − iκy

0 −κ̂h − iκy κ̂e + iκy 0

⎞
⎟⎠,

(1)

where the indices e and h correspond to the electrons and holes
with κ̂e,h = −i∂/∂xe,h, where xe and xh are the positions of
the electron and hole along the nanotube. This Hamiltonian
acts on the basis |�ij 〉 = |ψe

i 〉|ψh
j 〉, where the indices i and j

correspond to the carbon atoms of the two different sublattices
in the honeycomb lattice. In the absence of interaction and
band-filling effects, this Hamiltonian yields four energy eigen-
values corresponding to a pair of noninteracting quasiparticles:

ε = h̄vF
( ±

√
κ2

y + κ2
e ±

√
κ2

y + κ2
h

)
. (2)
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In this formalism, when considering a system containing a
single electron and a single hole, one should only consider
the solution with positive signs and the band gap of the
two-particle system is given by Eg = 2h̄vFκy . It should also
be noted that there also exists a possibility of binding a pair of
same-charge particles. This case corresponds to the solutions
with negative signs, interacting via a repulsive potential. In
what follows we will restrict ourselves to the single-valley
regime. However, the complete treatment of the problem
requires that all valley and spin quantum numbers be taken
into account; in this instance the number of different types of
excitons associated with a given carbon nanotube spectrum
branch rises to 16 [60]. The full treatment of the problem is
beyond the scope of the present paper.

The interaction potential U (xe − xh) is a function of the
relative separation between the particles only, therefore it is
convenient to move to the center of mass and relative motion
coordinates: X = (xe + xh)/2, x = xe − xh. Therefore, the
operators can be expressed as κ̂e = K̂/2+k̂ and κ̂h = K̂/2−k̂,
where k̂ = −i∂/∂x. The wave function of the interacting
particles can by written as �ij (X,x) = eiKXφij (x), allowing
the operator K̂ to be replaced with the constant K , which
represents the wave vector of the interacting particles center of
mass. Upon separating relative and center of mass motion, it is
more convenient to move to the symmetrized wave functions:

ψ1 = φBA − φAB, ψ2 = φAA − φBB,

ψ3 = φAA + φBB, ψ4 = φBA + φAB. (3)

This enables the eigenvalue problem to be expressed as

h̄vF M̂nmψm = [ε − U (xe − xh)]ψn, (4)

where

M̂ =

⎛
⎜⎜⎝

0 K i2κy 0
K 0 0 0

−i2κy 0 0 2k̂

0 0 2k̂ 0

⎞
⎟⎟⎠. (5)

Let us first consider the case of the stationary exciton, which
couples to light, i.e., K = 0. In this instance, φAA = φBB,
which allows us to reduce Eq. (4) from a system of four
equations down to three. Equation (4) can be reduced to a
single second-order equation in ψ3:

∂2ψ3

∂z2
− 1

E − V

∂(E − V )

∂z

∂ψ3

∂z

+ 1

4
[(E − V )2 − 4
2]ψ3 = 0, (6)

where we have scaled the eigenvalue E = εL/h̄vF, potential
energy V = UL/h̄vF, and momentum 
 = κyL and made
use of the variable change z = (x − W/2)/L, where W is the
effective width of the well and L a constant. The remaining
components ψ1 and ψ4 are found via the relations

ψ1 = i
2


E − V
ψ3, (7)

ψ4 = −i
2

E − V

∂ψ3

∂z
. (8)

Since our primary interest is the study of optoelectronic
applications of carbon nanotubes [19] we will restrict ourselves
to calculations concerning electron-hole pairs. However, the
approach used here can be easily generalized for the study
of same-charge particle pairs [34,35]. Indeed, it can be seen
that changing E to −E and V (x) to −V (x) leaves Eq. (6)
unchanged. Therefore, proving the existence of electron-hole
pairs interacting via an attractive potential within the gap
also demonstrates the existence of bound-state energies of
same-charge pairs interacting via a repulsive potential within
the gap. Notably, when the binding energy corresponds to the
middle of the gap, excitons and electron-electron pairs form
zero-energy states, which are currently a focus of research for
the broad quantum computing community.

On first inspection is seems natural to solve for the simplest
of potentials, the square well, defined by an abrupt step.
However, the derivative of the potential results in Dirac δ

functions, centered at the potential’s walls, entering Eq. (6).
Indeed, if the spinor components are a function of the potential,
then any piecewise potential and its derivative should be
continuous throughout the whole space to ensure that all the
spinor components and their derivatives are also continuous.
Therefore, it is natural to solve for either a truly smooth and
continuous potential [61,62] or a piecewise potential that has
a smooth derivative throughout all of space.

A smooth step potential can be defined as

V1 =
{
V0[1 − exp(−z)], z > 0

V0[exp(z) − 1], z < 0
(9)

where V0 is half the height of the step. This potential belongs
to a class of quantum models that are quasiexactly solvable
[62–67] and it will be shown that in the limit that the potential
transforms into the Heaviside step function the wave functions
can be expressed in terms of elementary functions. In Fig. 1
we plot the smooth step potential for L = 0.1 and 0.001. In
the limit L → 0 the potential tends towards the Heaviside step
function and the potential becomes truly flat at the origin. It
is convenient to consider one step only and take into account
the second wall of the well by imposing the following wave

FIG. 1. Smooth Klein step for L = 0.1 (solid line) and L = 0.001
(dashed line).
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function symmetry conditions at z = −W/2L:

ψ3

(
− W

2L

)
= 0, (10)

∂ψ3

∂z

∣∣∣∣
−W/2L

= 0, (11)

which correspond to odd and even modes of the square
well, respectively. Here W is defined by the spatial extension
of the interaction and the depth 2V0 is obtained from the
electrostatic attraction between the quasiparticles. Since the
two particles lie on the surface of the nanotube, the attractive
interaction potential vanishing at infinity takes the form
U (x) ≈ −e2/(ε

√
x2 + d2). Here ε is the effective dielectric

constant and d is the short-range cutoff parameter, which is
of the order of the nanotube diameter. Therefore, a realistic
potential should be nondivergent, thus making the square-well
potential V (x) = V1(x) − V0, with V1(x) given by Eq. (9),
a good first-order approximation for the short-range exciton
interaction.

For z < 0 the solution of Eq. (6) is found to be

ψ3,I =
∑
sβ

Asβ
Hc(α+,β+, − 2,α2

+/2,1 − α2
+/2; Z+)Zβ+/2

+

× exp

(
1

2
α+Z+

)
, (12)

where α+ = sαi(V0 + Ẽ), β+ = sβ

√
4
2 − (V0 + Ẽ)2, sα =

±1, sβ = ±1, Z+ = V0 exp(z)/(V0 + Ẽ), and Asβ
are

constants. Here we introduce Ẽ = E + V0. In addition,
Hc(α,β,γ,δ,η; Z+) is the Frobenius solution to the Heun
confluent equation, which has two regular singularities at
Z+ = 0 and 1 and one irregular singularity located at ∞
[68]. The power series is computed about the origin and
diverges at Z+ = 1. It should be noted that for complex β+,
exchanging the sign of α+ results in the same equation (12). An
analytic continuation of the power series can be obtained by
expanding the solution about the second regular singularity
Z+ = 1 and matching the two series and their derivatives
in between the singularities. The second pair of independent
solutions can be constructed about the point Z+ = 1 via the
identity [69]

Hc(α,β,γ,δ,η; Z+)

= G1Hc(−α,γ,β, − δ,η + δ; 1 − Z+)

+G2(−1 + Z+)−γHc(−α, − γ,β, − δ,η + δ; 1 − Z+).

(13)

However, Hc(−α+, − 2,β+, − α2
+/2,1; 1 − Z+) diverges

since γ = −2 unless α2
+ = β2

+, i.e., for 
 = 0. Therefore, for
nonzero 
, G1 = 0 and the solution to Eq. (6) can be written
as

ψ3,i = (1 − Z+)2
∑
sα,sβ

Csα,sβ
Hc(−α+,2,β+,

−α2
+/2,1; 1 − Z+)Zβ+/2

+ exp

(
1

2
α+Z+

)
, (14)

where Csα,sβ
are constants. However, Hc(−α+,2,β+, −

α2
+/2,1; 1 − Z+)Zβ+/2

+ = Hc(−α+,2, − β+, − α2
+/2,1; 1 −

Z+)Z−β+/2
+ ; therefore we may set csα,−1 = 0.

For z > 0 we obtain the solution

ψ3,II =
∑
sβ

Bsβ
Hc

(
α−,β−, − 2,

1

2
α2

−,1 − 1

2
α2

−,Z−

)

×Z
β−/2
− exp

(
1

2
α−Z−

)
, (15)

where α− = sαi(V0 − Ẽ), β− = sβ

√
4
2 − (V0 − Ẽ)2, Z− =

V0 exp(−z)/(V0 − Ẽ), and the expansion about Z− = 1 is
given by

ψ3,ii = (1 − Z−)2
∑
sα

Dsα
Hc(−α−,2,β−, − α2

−/2,1; 1 − Z−)

×Z
β−/2
− exp

(
1

2
α−Z−

)
, (16)

where Dsα
are constants. It is clear from Eqs. (15) and (16)

that for the function to decay at infinity we require 4
2 >

(V0 − Ẽ)2; therefore D−1 = 0. A real β− means that all bound
states of positive energy lie within the band gap of the two-body
system.

In what follows we will restrict ourselves to analyzing
bound states whose energy is above the center of the band
gap, i.e., Ẽ − V0 > 0. Paired states of negative energy will
not be studied here. For photocreated electron-hole pairs, the
energy range Ẽ − V0 > 0 is sufficient. Indeed, variational
calculations [70] of the binding energy in semiconductor
nanotubes supported by experimental data give a value for the
exciton binding energy of approximately 30% of the band gap.
For the Frobenius solutions to converge we require that their
arguments be less than 1. At the boundary Z+(0) = V0/(V0 +
Ẽ) and Z−(0) = V0/(V0 − Ẽ). Therefore, 0 < Z+(0) � 1/2,
whereas Z−(0) < 0. Hence, for z > 0, we restrict ourselves to
the Frobenius solutions of argument Z−, whereas for z < 0,
the Frobenius solutions of arguments Z+ and 1 − Z+ are valid
at the boundary z = 0. However, the Frobenius solution of
argument 1 − Z+ diverges as z → 0, which occurs rapidly for
|z| > L as L tends towards zero.

At the boundary the Frobenius solutions about Z± = 0 may
be expanded as a power series in α± and β±. By considering
first-order powers of L only, one may write

Hc(α±,β±, − 2,α2
±/2,1 − α2

±/2; Z±(0)) exp
[

1
2α±Z±(0)

]
× [Z±(0)]β±/2 ≈ 1 + 1

2β±{ln[Z±(0)] − Z±(0)} (17)

and in the limit z → ∞, Z+ → 0 and the Heun function of
argument zero has a value of unity, which therefore allows the
asymptotic wave function to be written as

lim
L→0

(ψ3,I) = A1 exp
(

1
2β+z

) + A−1 exp
(− 1

2β+z
)
. (18)

Using the approximation (17) and equating Eqs. (12) and
(14) and their derivatives at z = 0 allows Eq. (18) to be
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FIG. 2. Energy spectrum of an electron-hole pair interacting via
a one-dimensional smooth square well as a function of 
W/L for
2WV0/L = 10. The gray dashed (topmost) and black dashed (bot-
tommost) lines represent E = 2
 and E − 2V0 = 2
, respectively.
Lines 2 and 4 (in red) correspond to the even modes, while lines 1
and 3 (in blue) correspond to the odd modes.

written as

lim
L→0

(ψ3,I) = B1

[
cos

(
z

2

√
(V0 + Ẽ)2 − 4
2

)

+ V0 + Ẽ

V0 − Ẽ

√
4
2 − (V0 − Ẽ)2√
(V0 + Ẽ)2 − 4
2

× sin

(
z

2

√
(V0 + Ẽ)2 − 4
2

)]
, (19)

and for V0 = 0, Eq. (19) reduces to the plane wave of the
two-body wave function of wave vector

√
Ẽ2 − 4
2

/2L. The
other components are obtained via the relationships given by
Eq. (11). No further matching conditions are required since ψ3,
the potential, and their derivatives are matched at the boundary

(note this is not the case if the derivative of the potential
is discontinuous). For bound states, ψ3 exponentially decays
outside the well and therefore all the other spinor components
will decay too, and since Ẽ > V0 there will be no singularities
in the other spinor components. The odd modes of the square
well are therefore given by

V0 − Ẽ

V0 + Ẽ

√
(V0 + Ẽ)2 − 4
2√
4
2 − (V0 − Ẽ)2

− tan

(
W

4L

√
(V0 + Ẽ)2 − 4
2

)
= 0 (20)

and the even modes are given by

V0 − Ẽ

V0 + Ẽ

√
(V0 + Ẽ)2 − 4
2√
4
2 − (V0 − Ẽ)2

+ cot

(
W

4L

√
(V0 + Ẽ)2 − 4
2

)
= 0. (21)

The two transcendental equations can be solved graphically
or via other standard root-finding methods. In Fig. 2 we plot
the obtained energy spectrum for V0W/L = 10 and in Fig. 3
we show the dependence of the static exciton energy on the
depth of the well for two different values 
W/L = 1 and

W/L = 0.01 corresponding to the cases of semiconductor
and narrow-gap nanotubes respectively. For both narrow-gap
and semiconducting tubes, when V0W/L is small, there is only
one bound state. As V0 increases, the binding energy, defined
as Eb = 2
 − Ẽ, increases until it is equal to the value of
the band gap, upon which the exciton enters the continuum of
states and disassociates.

As mentioned in the Introduction, the question of exactly
how excitonic effects influence the optical processes in
narrow-gap nanotube is important for prospective THz devices.
Previous works suggest that the one-dimensional Van Hove
singularity is suppressed by excitonic effects for both long-
range and short-range electron-hole interaction potentials [30]
and prominent peaks arise in the absorption spectrum that
coincide with the exciton bound-state energies. Our analytic
results are therefore extremely important in determining the
role of excitonic effects, since knowledge of the eigenvalues
and functions at zero separation allows one, in principle, to
calculate the absorption coefficient via the Elliot formula.

FIG. 3. Dependence of the exciton energy Eb on the interaction strength 2V0: The left-hand side is for a semiconductor nanotube with

W/L = 1; the right-hand side is for a narrow-gap tube with 
W/L = 0.01. The different lines correspond to different excitonic states.
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Unlike for the Gauss hypergeometric series, for the Heun
functions the general formulas connecting solutions about
two different singular points for arbitrary parameters are not
known. To analyze the behavior of Eq. (16), we make use of
the following approximation. In the limit L → 0,

Hc(−α±,2,β±,0,1; 1 − Z±)

≈ 2F1

(
2 + 1

2
β±,1 + 1

2
β±; 3; 1 − Z±

)

−α±

[
1 − Z± + ln(Z±)

1 − Z±

]
, (22)

where 2F1 is the Gauss hypergeometric function. This enables
Eq. (14), at the well’s edge, to be written as

ψ3,i ≈ −
∑
sα

Csα,1(2 + α+)[(1 − Z+) + ln(Z+)] (23)

and as Z+ → 0 to be expressed as

ψ3,i ≈ −
∑
sα

Csα,1(2 + α+)

×
[

cosh

(
1

2
β+z

)
+ 2

β+
sinh

(
1

2
β+z

)]
. (24)

For arbitrary Ẽ and V0 it is not possible to ensure the
continuity of Eqs. (23) and (15) and their derivatives at the step
edge using the approximate wave functions. However, both
Frobenius solutions of arguments Z+ and 1 − Z+ are valid at
the boundary z = 0. Therefore, we may search for solutions
that are a superposition of both Frobenius solutions inside the
well. Upon substituting the approximate wave functions (17)
and (23) into the boundary conditions

ψ3,II(0) = ψ3,I(0) + ψ3,i(0),
∂ψ3,II

∂z

∣∣∣∣
0

= ∂ψ3,I + ψ3,i

∂z

∣∣∣∣
0

(25)

and making use of the asymptotic expressions (18) and (24) we
find that if A1 or A−1 are zero, then we restore the eigenvalues
obtained in Eqs. (20) and (21). For the case of nonzero A1 and
A−1 we find that

A±1 ≈ 1

2

[
1 ∓ β−

β+

1 − Z−
1 − Z+

]
B1 ∓ ω

β+
, (26)

where ω = −∑
sα

Csα,1(2 + α+), which allows the superposi-
tion of ψ3,I(−W/2) + ψ3,i(−W/2) to be expressed as

B1

[
cosh

(
1

2
β+z

)
− β−

β+

1 − Z−
1 − Z+

sinh

(
1

2
β+z

)]

+ω cosh

(
1

2
β+z

)
. (27)

Therefore, for the case of finite nondivergent A1 and A−1, we
require that ω ∝ L and in this instance the eigenvalues are
restored.

III. MOVING EXCITON

The spinor components of the eigenfunctions of a square
well need not necessarily be continuous at the well’s edge [54]
since they are solutions to a system of first-order differential
equations containing a potential that is itself discontinuous. By
analyzing the behavior of the wave function for our smooth
potential, in the limit in which it approaches a smooth square
well, one can obtain the appropriate boundary conditions for
the spinor components of the true square well at the well’s
edge. For our model potential, as L → 0 the wave function
remain continuous at the well’s edge; however, the derivative of
the spinor components may tend to infinity, which corresponds
to an abrupt jump in a square well’s wave function, i.e., a
discontinuity. The derivatives of the spinor components of the
smooth square well are given by the expressions

∂ψ1

∂x
= 1

L

[
± 1

1 − Z±
ψ1 − 
ψ4

]
,

∂ψ4

∂x
= −1

2

[
(E − V )2 − 4
2

(E − V )L

]
ψ3,

∂ψ3

∂x
= ± 1

L

∂ψ3

∂Z±
.

From Eq. (17) ∂ψ3/∂Z±|z=0 ∝ L, hence it can be seen from
the above expressions that when evaluated at the well’s edge
∂ψ1/∂x diverges as L → 0, while all the other components
and their derivatives remain finite. Away from the well’s edge,
all the spinor components of positive-energy bound states are
nondivergent. Therefore, when solving the same problem for
an abrupt step potential and analyzing to the left and to the right
of the well’s wall, the wave functions to be matched are ψ3

and ψ4 and not ψ1. However, though ψ3 and ψ4 are continuous
across the square well, their derivatives are not since they are
functions of the potential derivative.

For the case of the square well, of depth Ṽ0 and width W ,
centered about the origin, Eq. (6) becomes

∂2ψ3

∂x2
+ λψ3 = 0, (28)

where L2λ = [E2 − 4
2]/4 inside the well and L2λ =
[(E + Ṽ0)2 − 4
2]/4 outside the well, which admits the
solution

ψ3 =

⎧⎪⎨
⎪⎩

AI cos

(√
(E+Ṽ0)2−4
2

2L
x

)
+ AII sin

(√
(E+Ṽ0)2−4
2

2L
x

)
, x <

∣∣W
2

∣∣
±B exp

(
−

√
4
2−E2

2L
|x|

)
, x >

∣∣W
2

∣∣, (29)

where AI, AII, and B are constants and for odd modes AI = 0
while for even AII = 0. Using the continuity of the functions

ψ3 and ψ4 at the well’s edge, one restores the result obtained
for the smooth square well. However, unlike the smooth square
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well one may obtain exact solutions with finite K for the true
square well. For the case of an exciton possessing finite total
momentum along the nanotube axis, ψ2 cannot be eliminated

and both ∂ψ1/∂x and ∂ψ2/∂x diverge at the well’s edge.
By matching ψ3 and ψ4 at the well’s edge one obtains the
following eigenvalue relations:

tan

⎛
⎝ W

4L

√
(E + Ṽ0)2 − K̃2 − 4
2

(E + Ṽ0)2 − K̃2
(E + Ṽ0)2

⎞
⎠ + E

E + Ṽ0

√
(E2 − K̃2)(E + Ṽ0)2[(E + Ṽ0)2 − K̃2 − 4
2]

E2[(E + Ṽ0)2 − K̃2][4
2 − (E2 − K̃2)]
= 0, (30)

cot

⎛
⎝ W

4L

√
(E + Ṽ0)2 − K̃2 − 4
2

(E + Ṽ0)2 − K̃2
(E + Ṽ0)2

⎞
⎠ − E

E + Ṽ0

√
(E2 − K̃2)(E + Ṽ0)2[(E + Ṽ0)2 − K̃2 − 4
2]

E2[(E + Ṽ0)2 − K̃2][4
2 − (E2 − K̃2)]
= 0, (31)

where K̃ = KL and we restrict ourselves to the case where
(E + Ṽ0)2 − K̃2 > 0 to ensure that there are no singularities
in the spinor components and that 4
2 − (E2 − K̃2) > 0 and
E2 − K̃2 > 0 for the states to decay outside the well. Here
Eq. (30) is for odd ψ3 and Eq. (31) is for even ψ3. It should
be noted that in the δ-function limit considered in the next
section Eqs. (30) and (31) give the same result as for the δ

function of small strength. In general, Eqs. (30) and (31) can be
solved graphically or via other standard root-finding methods.
In Fig. 4 we plot the obtained energy spectrum as a function of

W/L for Ṽ0W/L = 10 for a range of K values and it can be
seen that as K increases, the bands blueshift. In Fig. 5 we show
the dependence of the dynamic exciton energy on the depth of

FIG. 4. Thick gray dotted, dashed, and dot-dashed lines denote

E =
√

K̃2 + 4
2 for K̃ = 0, 1, and 2, respectively, while their black

counterparts denote E =
√

K̃2 + 4
2 − V0. The solid green, blue,
and red lines (the lowest, second from the bottom, and top lines
in each set of lines, respectively) correspond to the eigenvalues of
K̃ = 0, 1, and 2, respectively, and their dashed counterparts mark
E = K̃ .

the well for a narrow-gap nanotube defined by 
W/L = 0.01.
The increase of K naturally shifts the excitonic states to higher
energies.

IV. THE δ-FUNCTION POTENTIAL

Let us now consider the limit of very weak electron-hole
attraction in the nonrelativistic regime |2V0| 	 
. In this limit
approximate solutions to Eqs. (20) and (21) can be obtained for
small binding energies. We find that for small binding energies
Eb = 
V 2

0 W 2/L2. Therefore, for a very narrow deep well
where 2V0/L 
 W , with 2V0W/L = α, the binding energy is
Eb = 
α2/4, thus we recover the nonrelativistic solution for
an attractive δ-function potential of strength α. The strength
of the potential α, i.e., V = −αLδ(x), can be estimated as a
product of the strength of the realistic potential and its width.

We will now consider the case when the interaction
potential (9) tends towards the δ-function potential V1(x) =
−αLδ(x) + V0 in the nonclassical regime. In the limit
that 2V0/L → ∞ and W → 0 such that 2V0W/L = α and

W/L 	 1, Eqs. (20) and (21) admit the approximate
solutions

E = −2

tan

(
α
4

)
√

1 + tan2
(

α
4

) (32)

FIG. 5. Dependence of the exciton binding energy Eb on the
interaction strength 2V0 with 
W/L = 0.01 for K = 0 (black
topmost line in each set), K = 
 (blue line, second from top in each
set), K = 2
 (green line, third from top in each set), and K = 3


(red bottommost line in each set).
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FIG. 6. Dependence of the exciton binding energy Eb on the
interaction strength α, for an electron-hole pair interacting via the
interaction potential (9) in the δ-function limit. The different lines
correspond to different excitonic states. The crosses indicate when
Eb = 2
, which occurs at α = 2(1 + n)π , where n = 0,1,2,3, . . ..

and

E = 2

cot

(
α
4

)
√

1 + cot2
(

α
4

) (33)

for odd and even modes, respectively. For a given 
, if Eq. (32)
is negative, Eq. (33) is positive and vice versa. Therefore, the δ

function can at most contain one bound state of positive energy.
This can be seen in Fig. 6, where the appearance of a higher-
order solutions coincides with the dissociation of the lower-
order one. In the limit of very weak electron-hole attraction
we find that for small binding energies, Eb ≈ 
α2/16.

There are many other smooth analytic approximations
to the δ function. The hyperbolic secant potential V =
−α/π cosh(x/L) is known to admit analytical expressions
for zero energy when α = (1 + 2n)π + √

1 + 4
2π [29]. In
the δ-function limit, i.e., as L → 0, the condition becomes
α = 2(1 + n)π , where n = 0,1,2, . . .. Restricting ourselves to
the modes of relevant parity, we find that the same conditions
hold true for Eqs. (32) and (33) at zero energy.

It should be noted that for odd solutions of ψ3, the δ function
can be solved by imposing that ψ3 is discontinuous at the
origin, whereas ψ4 is continuous but its derivative is not. Let
us consider the potential V = −αLδ(x); expressing Eq. (4) in
terms of ψ4 and integrating across the interval [0−; 0+] yields

E

(
∂ψ4

∂x̃

∣∣∣∣
0+

− ∂ψ4

∂x̃

∣∣∣∣
0−

)
+ 1

4
α(E2 − 4
2)ψ4(0) = 0, (34)

where x̃ = x/L. A second relation can be found in the regions
x > 0 and x < 0, ∂2ψ4

∂x̃2 − 1
4 (4
2 − E2)ψ4 = 0, which admits

the solution ψ4 = G4 exp(−√
4
2 − E2|x̃|/2). Substituting

the definition of ψ4 into Eq. (34) results in the eigenvalue
E = −2
α/

√
16 + α2, which for small values of α [when

tan(α/4) ≈ α/4] is in agreement with Eq. (32). Since ψ4 is
even, it follows that ψ1 and ψ3 are odd. For even ψ3 we must
solve Eq. (6). Integrating Eq. (6) across the interval [0−; 0+]

yields

1

E

(
∂ψ3

∂x̃

∣∣∣∣
0+

− ∂ψ3

∂x̃

∣∣∣∣
0−

)
+ 1

4
αψ3(0)

−
∫ 0+

0−


2

(E − V )
ψ3dx̃ = 0, (35)

and in the regions x > 0 and x < 0 we find that ψ3 =
G3 exp(−√

4
2 − E2|x̃|/2). After regularization, the integral
containing the δ function becomes zero and the resulting
eigenvalue is found to be E = 8
/

√
α2 + 16, which in the

limit of small α agrees with Eq. (33).
We will now consider the case of an exciton possessing

finite total momentum along the nanotube axis formed by
an electron-hole pair interacting via a δ-function potential.
Repeating the same procedure for finite K , we find for even

ψ4, ψ4 = G4 exp(− 1
2

√
4
2+K̃2−E2

E2−K̃2 |Ex̃|) and

E = ±
√

K̃2 + 4α2
2

16 + α2
, (36)

where K̃ = KL. We also require that 4
2 + K̃2 > E2 to
ensure that the state is bound. For even ψ3, we integrate Eq. (6)
across the interval [0−; 0+] to obtain

1

E

(
∂ψ3

∂x̃

∣∣∣∣
0+

− ∂ψ3

∂x̃

∣∣∣∣
0−

)
+ 1

4
αψ3(0)

+
∫ 0+

0−

(E − V )
2

K̃2 − (E − V )2
ψ3dx̃ = 0. (37)

Regularizing the δ function requires that the denominator
be nonsingular; this imposes the requirement that K̃2 −
(E − V )2 > 0. Since ψ3 = G3 exp(− 1

2

√
4
2+K2−E2

E2−K2 |Ex̃|) the
integral containing the δ function becomes zero and the
resulting eigenvalue is found to be

E = ±
√

K̃2 + 64
2

16 + α2
. (38)

Comparing the rest frame to the moving frame and treating the
transverse momentum as an effective mass, one restores the
energy-momentum relation given by special relativity.

V. CONCLUSION

Solutions were obtained in the rest frame for the quasi-
one-dimensional two-body Dirac problem, for a smooth step
interaction potential, in terms of Heun confluent functions. By
symmetry, this potential was used to obtain the eigenvalues
of a smooth square well, which are found by solving a set
of transcendental equations. Such a potential can be used to
approximate the interaction potential between an electron-hole
pair in a narrow-gap nanotube. The binding energy of these
pairs was found to never exceed the band gap and therefore
at room temperature the electron-hole pairs should be fully
ionized. Hence, undesirable effects due to dark excitons should
not dominate optical processes in narrow-gap nanotubes.
By analyzing the smooth square well’s stationary excitonic
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wave functions, the appropriate boundary conditions were
obtained for an abrupt square well, which in turn enables
the dynamic exciton energy levels to be found. We also
consider δ-function interaction, a highly nontrivial problem for
relativistic particles, and show that different approximations
for the δ function give the same result. Many of our results
can be generalized for a pair of particles of the same charge,
which, as we have shown, can have bound states within the
gap.

The question of exactly how excitonic effects influence
the optical processes in a narrow-gap nanotube is still an
outstanding problem. Not only does this piecewise potential
serve as an important tool for analyzing the excitonic energy
levels in a narrow gap nanotube, but the simplicity of
the asymptotic forms of the wave function in the square
limit coupled with their easily determinable eigenvalues is
extremely useful in determining the optical absorption spectra
due to excitons in narrow-gap carbon nanotubes [30]. It should

also be noted that the Hamiltonian used in this paper is of
the same form as certain types of graphene nanoribbons or
armchair carbon nanotubes subjected to an external magnetic
field applied along the tube axis [13,21,22] and therefore
the results obtained herein are relevant to a broad range of
quasi-one-dimensional Dirac systems.
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