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The bound-state energy eigenvalues for the two-dimensional Kepler problem are
found to be degenerate. This ‘‘accidental’’ degeneracy is due to the existence of a
two-dimensional analog of the quantum-mechanical Runge–Lenz vector. Reformu-
lating the problem in momentum space leads to an integral form of the Schro¨dinger
equation. This equation is solved by projecting the two-dimensional momentum
space onto the surface of a three-dimensional sphere. The eigenfunctions are then
expanded in terms of spherical harmonics, and this leads to an integral relation in
terms of special functions which has not previously been tabulated. The dynamical
symmetry of the problem is also considered, and it is shown that the two compo-
nents of the Runge–Lenz vector in real space correspond to the generators of
infinitesimal rotations about the respective coordinate axes in momentum space.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1503868#

I. INTRODUCTION

A semiconductor quantum well under illumination is a quasi-two-dimensional system
which photoexcited electrons and holes are essentially confined to a plane. The mutual Co
interaction leads to electron–hole bound states known as excitons, which are extremely im
for the optical properties of the quantum well. The relative in-plane motion of the electron
hole can be described by a two-dimensional Schro¨dinger equation for a single particle with
reduced mass. This is a physical realization of the two-dimensional hydrogenic problem,
originated as a purely theoretical construction.1 An important similarity with the three-dimensiona
hydrogen atom is the ‘‘accidental’’ degeneracy of the bound-state energy levels. This dege
is due to the existence of the quantum-mechanical Runge–Lenz vector, first introduced by2

in three dimensions, and indicates the presence of a dynamical symmetry of the system.
The most important study relating to the hidden symmetry of the hydrogen atom was th

Fock in 1935.3 He considered the Schro¨dinger equation in momentum space, which led to
integral equation. Considering negative-energy~bound-state! solutions, he projected the three
dimensional momentum space onto the surface of a four-dimensional hypersphere. After a s
transformation of the wavefunction, the resulting integral equation was seen to be invariant
rotations in four-dimensional momentum space. Fock deduced that the dynamical symmetry
hydrogen atom is described by the four-dimensional rotation group SO~4!, which contains the
geometrical symmetry SO~3! as a subgroup. He related this hidden symmetry to the obse
degeneracy of the energy eigenvalues.

Shortly afterwards, Bargmann4 made the connection between Pauli’s quantum mechan
Runge–Lenz vector and Fock’s discovery of invariance under rotations in four-dimensiona
mentum space. Fock’s method was also extended by Alliluev5 to the case ofd dimensions (d
>2). A comprehensive review concerning the symmetry of the hydrogen atom was later giv
Bander and Itzykson,6,7 including a detailed group-theoretical treatment and extension to sca
ing states.

Improvements in semiconductor growth techniques over the subsequent decades, wh
abled the manufacture of effectively two-dimensional structures, led to a resurgence of inte
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the two-dimensional hydrogen atom. The Runge–Lenz vector for this case was defined for t
time,8 and real-space solutions of the Schro¨dinger equation were applied to problems of atom
physics in two dimensions.9

Recent studies have focused on diverse aspects of the hydrogenic problem. Thed-dimensional
case has been reconsidered, leading to a generalized Runge–Lenz vector~see Ref. 10 and refer
ences therein!. The algebraic basis of the dynamical symmetry has also been given a tho
mathematical treatment.11,12

In the present work we return to the two-dimensional problem, and use the method of F
obtain a new integral relation in terms of special functions. The dynamical symmetry of the s
is also considered, and a new interpretation of the two-dimensional Runge–Lenz vector
sented.

II. PROBLEM FORMULATION

A. Preliminaries

The relative in-plane motion of an electron and hole, with effective massesme and mh ,
respectively, may be treated as that of a single particle with reduced massm5memh /(me1mh)
and energyE, moving in a Coulomb potentialV(r). The wavefunction of the particle satisfies th
stationary Schro¨dinger equation

ĤC~r!5F2
1

r

]

]r S r
]

]r D2
1

r2

]2

]f2 1V~r!GC~r!5EC~r!, ~1!

where~r,f! are plane polar coordinates. Note that excitonic Rydberg units are used throu
this article, which leads to a potential of the formV(r)522/r.

The eigenfunctions of Eq.~1! are derived in Appendix A. It is well known that the bound-sta
energy levels are of the form1

E52
1

~n1 1
2!

2
, n50,1,2,..., ~2!

wheren is the principal quantum number. Notably, Eq.~2! does not contain explicitly the azi
muthal quantum numberm, which enters the radial equation@see Appendix A, Eq.~A4!#. Each
energy level is (2n11)-fold degenerate, the so-called accidental degeneracy.

It is convenient to introduce a vector operator corresponding to thez-projection of the angular
momentum,L̂ z5ezL̂z , whereez is a unit vector normal to the plane of motion of the electron a
hole. We now introduce the two-dimensional analog of the quantum-mechanical Runge
vector as the dimensionless operator

Â5~ q̂3L̂ z2L̂ z3q̂!2
2

r
r, ~3!

where q̂52 i¹ is the momentum operator. Note thatÂ lies in the plane and has Cartesia
componentsÂx and Ây .

L̂z , Âx , andÂy represent conserved quantities and therefore commute with the Hamilto

@Ĥ,L̂z#5@Ĥ,Âx#5@Ĥ,Ây#50. ~4!

They also satisfy the following commutation relations:

@ L̂z ,Âx#5 iÂy , ~5!

@ L̂z ,Ây#52 iÂx , ~6!
d 23 Sep 2002 to 144.173.6.79. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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@Âx ,Ây#524i L̂ zĤ. ~7!

B. Derivation of energy eigenvalues from Â

The existence of the noncommuting operatorsÂx and Ây , representing conserved physic
quantities, implies that the Runge–Lenz vector is related to the accidental degeneracy
energy levels in two dimensions.13 We now present a simple interpretation of the hidden symm
underlying this degeneracy.

For eigenfunctions of the Hamiltonian we can replaceĤ by the energyE, and defining

Â85
Â

2A2E
, ~8!

we obtain the new commutation relations:

@ L̂z ,Âx8#5 iÂy8 , ~9!

@ L̂z ,Ây8#52 iÂx8 , ~10!

@Âx8 ,Ây8#5 i L̂ z . ~11!

If we now construct a three-dimensional vector operator

Ĵ5Â81L̂ z , ~12!

then the components ofĴ satisfy the commutation rules of ordinary angular momentum:

@ Ĵ j ,Ĵk#5 i e jkl Ĵl , ~13!

wheree jkl is the Levi-Civita symbol.
Noting thatÂ8•L̂ z5L̂ z•Â850, we have

Ĵ25~Â81L̂ z!
25Â821L̂ z

2, ~14!

where the operatorĴ2 has eigenvaluesj ( j 11) and commutes with the Hamiltonian.
We now make use of a special expression relatingÂ2 andL̂ z

2, the derivation of which is given
in Appendix B:

Â25Ĥ~4L̂ z
211!14. ~15!

Substituting in Eq.~14! and again replacingĤ with E, we obtain

Ĵ252
1

4E
@E~4L̂ z

211!14#1L̂ z
2. ~16!

Because@Ĥ,Ĵ2#50, an eigenfunction of the Hamiltonian will also be an eigenfunction ofĴ2.
Operating with both sides of Eq.~16! on an eigenfunction of the Hamiltonian, we obtain for t
eigenvalues ofĴ2:

j ~ j 11!52S 1

4
1

1

ED . ~17!

Rearranging, and identifyingj with the principal quantum numbern, we obtain the correct expres
sion for the energy eigenvalues:
d 23 Sep 2002 to 144.173.6.79. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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E52
1

~n1 1
2!

2
, n50,1,2,... . ~18!

Note that thez-component ofĴ is simply L̂z . Recalling that the eigenvalues ofL̂z are denoted
by m, there are (2j 11) values ofm for a givenj. However, asj 5n, we see that there are (2n
11) values ofm for a given energy, which corresponds to the observed (2n11)-fold degeneracy.

III. FOCK’S METHOD IN TWO DIMENSIONS

A. Stereographic projection

The method of Fock,3 in which a three-dimensional momentum space is projected onto
surface of a four-dimensional hypersphere, may be applied to our two-dimensional proble
begin by defining a pair of two-dimensional Fourier transforms between real space and mom
space:

F~q!5E C~r!eiq"r dr, ~19!

C~r!5
1

~2p!2 E F~q!e2 iq"r dq. ~20!

We shall restrict our interest to bound states, and hence the energyE52q0
2 will be negative.

Substitution of Eq.~20! in Eq. ~1! yields the following integral equation forF~q!:

~q21q0
2!F~q!5

1

p E F~q8! dq8

uq2q8u
. ~21!

The two-dimensional momentum space is now projected onto the surface of a
dimensional unit sphere centered at the origin, and so it is natural to scale the in-plane mom
by q0 . Each point on a unit sphere is completely defined by two polar angles,u andf, and the
Cartesian coordinates of a point on the unit sphere are given by

ux5sinu cosf5
2q0qx

q21q0
2 , ~22!

uy5sinu sinf5
2q0qy

q21q0
2 , ~23!

uz5cosu5
q22q0

2

q21q0
2 . ~24!

An element of surface area on the unit sphere is given by

dV5sinu du df5S 2q0

q21q0
2D 2

dq, ~25!

and the distance between two points transforms as

uu2u8u5
2q0

~q21q0
2!1/2~q821q0

2!1/2 uq2q8u. ~26!

If the wavefunction on the sphere is expressed as
d 23 Sep 2002 to 144.173.6.79. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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x~u!5
1

Aq0
S q21q0

2

2q0
D 3/2

F~q!, ~27!

then Eq.~21! reduces to the simple form

x~u!5
1

2pq0
E x~u8! dV8

uu2u8u
. ~28!

B. Expansion in spherical harmonics

Any function on a sphere can be expressed in terms of spherical harmonics, so forx~u! we
have

x~u!5(
l 50

`

(
m52 l

l

AlmYl
m~u,f!, ~29!

whereYl
m(u,f) are basically defined as in Ref. 14:

Yl
m~u,f!5clmA2l 11

4p

~ l 2umu!!
~ l 1umu!!

Pl
umu~cosu!eimf, ~30!

wherePn
umu(cosu) is an associated Legendre function as defined in Ref. 15. The constantclm is an

arbitrary ‘‘phase factor.’’ As long asuclmu251 we are free to chooseclm , and for reasons which
will become clear we set

clm5~2 i ! umu. ~31!

The kernel of the integral in Eq.~28! can also be expanded in this basis as16

1

uu2u8u
5 (

l50

`

(
m52l

l
4p

2l11
Yl

m~u,f!Yl
m* ~u8,f8!. ~32!

Substituting Eqs.~29! and ~32! into Eq. ~28! we have

(
l 50

`

(
m52 l

l

AlmYl
m~u,f!5

2

q0
(

l 150

`

(
l 250

`

(
m152 l 1

l 1

(
m252 l 2

l 2 E 1

2l 211
Al 1m1

Yl 1

m1~u8,f8!

3Yl 2

m2~u,f!Yl 2

m2* ~u8,f8! dV8. ~33!

We now make use of the orthogonality property of spherical harmonics to reduce Eq.~33! to
the following:

(
l 50

`

(
m52 l

l

AlmYl
m~u,f!5

2

q0
(

l 150

`

(
m152 l 1

l 1 1

2l 111
Al 1m1

Yl 1

m1~u,f!. ~34!

Multiplying both sides of Eq.~34! by Yn
m8* (u,f) and integrating overdV gives

Anm85
2

q0~2n11!
Anm8 , ~35!

where we have again used the orthogonality relation for spherical harmonics. The final ste
rearrange forq0 and identify the indexn with the principal quantum number. This enables us
find an expression for the energy in excitonic Rydbergs:
d 23 Sep 2002 to 144.173.6.79. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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E52q0
252

1

~n1 1
2!

2
, n50,1,2,... . ~36!

This is seen to be identical to Eq.~2!.
For a particular value ofn, the general solution of Eq.~28! can be expressed as

xn~u!5 (
m52n

n

AnmYn
m~u,f!. ~37!

Each of the functions entering the sum in Eq.~37! satisfies Eq.~28! separately. So, for each valu
of n we have (2n11) linearly independent solutions, and this explains the observed (2n11)-fold
degeneracy.

We are free to choose any linear combination of spherical harmonics for our eigenfunc
but for convenience we simply choose

xnm~u!5AnmYn
m~u,f!. ~38!

If we also require our eigenfunctions to be normalized as follows:

1

~2p!2 E ux~u!u2 dV5
1

~2p!2 E q21q0
2

2q0
2 uF~q!u2 dq5E uC~r!u2 dr51, ~39!

then Eq.~38! reduces to

xnm~u!52pYn
m~u,f!. ~40!

Applying the transformation in Eq.~27!, we can obtain an explicit expression for the orth
normal eigenfunctions of Eq.~21!:

Fnm~q!5cnmA2p
~n2umu!!
~n1umu!! S 2q0

q21q0
2D 3/2

Pn
umu~cosu!eimf, ~41!

where we have used the fact thatq05(n1 1
2)

21, andu andf are defined by Eqs.~22!–~24!.

C. New integral relations

To obtain the real-space eigenfunctionsC~r! we make an inverse Fourier transform:

C~r!5
1

~2p!2 E F~q!e2 iq"r dq5
1

~2p!2 E
0

2pE
0

`

F~q!e2 iqr cosf8q dq df8, ~42!

wheref8 is the azimuthal angle between the vectorsr andq. However, if we now substitute Eq
~41! into this expression, we have to be careful with our notation. The angle labeledf in Eq. ~41!
is actually related tof8 via

f5f81fr , ~43!

wherefr is the azimuthal angle of the vectorr, which can be treated as constant for the purpo
of our integration.

Taking this into account, the substitution of Eq.~41! into Eq. ~42! yields

C~r!5
cnm

~2p!3/2A~n2umu!!
~n1umu!!

eimfrE
0

2pE
0

`S 2q0

q21q0
2D 3/2

Pn
umu~cosu!ei ~mf82qr cosf8!q dq df8.

~44!
d 23 Sep 2002 to 144.173.6.79. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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From Eq.~24! we obtain

Pn
umu~cosu!5Pn

umuS q22q0
2

q21q0
2D , ~45!

and we use the following form of Bessel’s integral:16

E
0

2p

ei ~mf82qr cosf8! df852p~2 i !mJm~qr!, ~46!

whereJm(qr) is a Bessel function of the first kind of orderm. Substituting Eqs.~45! and~46! into
Eq. ~44! leads to

C~r!5
cnm~2 i !m

A2p
A~n2umu!!

~n1umu!!
eimfrE

0

`S 2q0

q21q0
2D 3/2

Pn
umuS q22q0

2

q21q0
2D Jm~qr!q dq. ~47!

We now make a change of variables,x5q0r andy5q2/q0
2, so that Eq.~47! becomes

C~r!5cnm~21!n1m~2 i !mAq0~n2umu!!
p~n1umu!!

eimfrE
0

`

Pn
umuS 12y

11yD Jm~xAy!

~11y!3/2 dy, ~48!

where we have used the fact that16

Pn
umuS y21

y11D5~21!n1mPn
umuS 12y

11yD . ~49!

If we now equate the expression forC~r! in Eq. ~48! with that derived in Appendix A, we
obtain the following:

cnm~21!n1m~2 i !mE
0

`

Pn
umuS 12y

11yD Jm~xAy!

~11y!3/2 dy5
~2x! umue2x

n11/2
Ln2umu

2umu ~2x!. ~50!

The value ofcnm chosen earlier in Eq.~31! ensures that both sides of Eq.~50! are numerically
equal. If we restrict our interest tom>0, then the relation simplifies to

E
0

`

Pn
mS 12y

11yD Jm~xAy!

~11y!3/2 dy5
~21!n~2x!me2x

n11/2
Ln2m

2m ~2x!, n,m50,1,2,...; m<n. ~51!

As far as we can ascertain, this integral relation between special functions has not prev
been tabulated. Forn,m50 we recover the known integral relation15

E
0

` J0~xAy!

~11y!3/2dy52e2x. ~52!

IV. DYNAMICAL SYMMETRY

A. Infinitesimal generators

Consider now a vectoru from the origin to a point on the three-dimensional unit sph
defined in Sec. III A. If this vector is rotated through an infinitesimal anglea in the (uxuz) plane,
we have a new vector

u85u1du, ~53!
d 23 Sep 2002 to 144.173.6.79. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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where the components ofu are given in Eqs.~22!–~24!, and

du5aey3u. ~54!

This rotation on the sphere corresponds to a change in the two-dimensional momentum froq to
q8. The Cartesian components of Eq.~53! are then found to be

ux85
2q0qx8

q821q0
2 5

2q0qx

q21q0
2 1a

q22q0
2

q21q0
2 , ~55!

uy85
2q0qy8

q821q0
2 5

2q0qy

q21q0
2 , ~56!

uz85
q822q0

2

q821q0
2 5

q22q0
2

q21q0
22a

2q0qx

q21q0
2 , ~57!

whereq25qx
21qy

2.
After some manipulation we can also find the components ofdq5q82q:

dqx5a
q22q0

222qx
2

2q0
, ~58!

dqy52a
qxqy

q0
. ~59!

The corresponding change inF~q! is given by

dF~q!5
a

~q21q0
2!3/2 S q22q0

222qx
2

2q0

]

]qx
2

qxqy

q0

]

]qy
D @~q21q0

2!3/2F~q!#. ~60!

We can write this as

dF~q!52
i

2q0
aÂxF~q!, ~61!

where the infinitesimal generator is given by

Âx5
i

~q21q0
2!3/2F ~q22q0

222qx
2!

]

]qx
22qxqy

]

]qy
G~q21q0

2!3/2. ~62!

We now make use of the following operator expression in the momentum representatio

r̂5exx̂1eyŷ5 i¹q , ~63!

and the commutation relation

@ r̂, f ~q!#5 i¹qf , ~64!

to derive a more compact expression forÂx :

Âx5~q22q0
2!x̂22qx~q"r̂!23iqx . ~65!

By considering an infinitesimal rotation in the (uyuz) plane we can obtain a similar expressio
for Ây :
d 23 Sep 2002 to 144.173.6.79. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Ây5~q22q0
2!ŷ22qy~q"r̂!23iqy . ~66!

These expressions operate on a particular energy eigenfunction with eigenvalue2q0
2. If we

move the constant2q0
2 to the right and replace it with the Hamiltonian in momentum space,Ĥ,

Âx5q2x̂1 x̂Ĥ22qx~q"r̂!23iqx , ~67!

Ây5q2ŷ1 ŷĤ22qy~q"r̂!23iqy , ~68!

thenÂx andÂy can operate on any linear combination of eigenfunctions.

B. Relation to Runge–Lenz vector

Recall the definition of the two-dimensional Runge–Lenz vector in real space:

Â5~ q̂3L̂ z2L̂ z3q̂!2
2

r
r. ~69!

Using L̂ z5r3q̂, and the following identity for the triple product of three vectors:

a3~b3c!5~a"c!b2~a"b!c, ~70!

we can apply the commutation relation@r,q̂#5 i to rewrite Eq.~69! in the form:

Â5q̂2r1rS q̂22
2

r D22q̂~ q̂"r!23i q̂. ~71!

If we now return to the expression for the real-space Hamiltonian in Eq.~1!, it is apparent that
we may substitute

q̂22
2

r
5Ĥ ~72!

in Eq. ~71! to yield

Â5q̂2r1rĤ22q̂~ q̂"r!23i q̂. ~73!

Comparing this with Eqs.~67! and~68!, it is evident that the two components of the Runge–Le
vector in real space correspond to the generators of infinitesimal rotations in the (uxuz) and (uyuz)
planes.

V. CONCLUSION

We have shown that the accidental degeneracy in the energy eigenvalues of the
dimensional Kepler problem may be explained by the existence of a planar analog of the fa
three-dimensional Runge–Lenz vector. By moving into momentum space and making a s
graphic projection onto a three-dimensional sphere, a new integral relation in terms of s
functions has been obtained, which to our knowledge has not previously been tabulated. W
also demonstrated explicitly that the components of the two-dimensional Runge–Lenz ve
real space are intimately related to infinitesimal rotations in three-dimensional momentum

APPENDIX A: SOLUTION OF REAL-SPACE SCHRÖ DINGER EQUATION

We apply the method of separation of variables to Eq.~1!, making the substitution

C~r!5R~r!F~f!. ~A1!
d 23 Sep 2002 to 144.173.6.79. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Introducing a separation constantm2, we can obtain the angular equation

d2F

df2 1m2F50, ~A2!

with the solution

F~f!5
1

A2p
eimf. ~A3!

The corresponding radial equation~with E52q0
2) is

d2R

dr2 1
1

r

dR

dr
1S 2

r
2q0

22
m2

r2 DR50. ~A4!

We make the substitution

R~r!5Cr umue2q0rw~r!, ~A5!

whereC is a normalization constant. This leads to the equation

r
d2w

dr2 1~2umu1122q0r!
dw

dr
1~222umuq02q0!w50. ~A6!

Making a final change of variablesb52q0r, we obtain

b
d2w

db2 1~2umu112b!
dw

db
1S 1

q0
2umu2

1

2Dw50. ~A7!

This is the confluent hypergeometric equation,15 which has two linearly independent solutions.
we choose the solution which is regular at the origin, then this becomes a polynomial of
degree ifq05(n1 1

2)
21 with n50,1,2,... . Equation~A7! then becomes the associated Lague

equation,16 the solutions of which are the associated Laguerre polynomials:

w5Ln2umu
2umu ~b!5Ln2umu

2umu ~2q0r!. ~A8!

We can now write the real-space wavefunction in the form

Cnm~r!5
C

2p
r umue2q0rLn2umu

2umu ~2q0r!eimfr, ~A9!

where the reason for the subscript onf is explained in Sec. III C.
To normalize this wavefunction we need to make use of the integral16

E
0

`

e22q0r~2q0r!2umu11Ln2umu
2umu ~2q0r!Ln2umu

2umu ~2q0r! d~2q0r!5
~n1umu!!
~n2umu!! ~2n11!. ~A10!

The normalized wavefunctions are therefore

Cnm~r!5Aq0
3~n2umu!!

p~n1umu!! ~2q0r! umue2q0rLn2umu
2umu ~2q0r!eimfr, ~A11!

satisfying the following orthogonality condition:
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Downloade
E Cn1m1
* ~r!Cn2m2

~r! dr5dn1n2
dm1m2

. ~A12!

APPENDIX B: DERIVATION OF EQ. „15…

From Eq.~3! we have

Â25F ~ q̂3L̂ z2L̂ z3q̂!2
2

r
rG2

5@2~ q̂3L̂ z!2 i q̂#22
2

r
r•@2~ q̂3L̂ z!2 i q̂#

2
2

r
@2~ q̂3L̂ z!2 i q̂#•r14. ~B1!

We further expand as follows:

@2~ q̂3L̂ z!2 i q̂#254~ q̂3L̂ z!
222i q̂•~ q̂3L̂ z!22i ~ q̂3L̂ z!•q̂2q̂2

54q̂2L̂ z
212q̂22q̂25q̂2~4L̂ z

211!, ~B2!

and

2
2

r
r•@2~ q̂3L̂ z!2 i q̂#2

2

r
@2~ q̂3L̂ z!2 i q̂#•r52

2

r
~4L̂ z

211!. ~B3!

Substituting Eqs.~B2! and ~B3! into Eq. ~B1! gives

Â25q̂2~4L̂ z
211!2

2

r
~4L̂ z

211!14, ~B4!

which, from Eq.~72!, is just

Â25Ĥ~4L̂ z
211!14. ~B5!
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