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Abstract. We outline a range of proposals on using quantum rings and 

nanohelices for terahertz device implementations. We show that an Aharonov-

Bohm quantum ring system and a double-gated quantum ring system both permit 

control over the polarization properties of the associated terahertz radiation. In 

addition, we review the superlattice properties of a mathematically similar 

system, that of a nanohelix in external electric fields, which reveals negative 

differential conductance. 

1. INTRODUCTION

The aptly named THz gap is a narrow region of the electromagnetic spectrum 

for which practical and portable technologies lack the ability to produce or detect 

coherent radiation [1,2]. Bridging this gap constitutes one of the trickiest 

problems of modern applied physics and offers potentially diverse device 

applications spanning from noninvasive biomedical imaging to stand-off 

detection of plastic explosives [3]. In this paper, we present several original 

proposals of using non-simply connected and chiral nanostructures as tunable 
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active elements in optoelectronic devices operating in the sought-after THz 

frequency range [4-10].  

  

2. QUANTUM RINGS 

The progress in epitaxial growth techniques has led to the burgeoning realm 

of quantum ring (QR) physics [11]. The fascination with these novel 

nanostructures originates from the range of exotic quantum phenomena 

predominantly resulting from the Aharonov-Bohm effect [12,13]. Piercing a 

quantum ring by a magnetic flux 𝜙 yields the single-electron energy spectrum 

𝜀𝑚(𝜙) = (𝑚 + 𝜙 𝜙0⁄ )2𝜀1(0),                   (1) 

where 𝜙0 = ℎ/𝑒 is the flux quanta, and 𝑚 ∈ ℤ denotes the angular momentum 

quantum number. For a typical semiconductor ring of radius 𝑅~10nm and 

electron effective mass  𝑚𝑒
∗ = 0.07𝑚0, the energy scale 𝜀1(0) = ℏ2/2𝑚𝑒

∗𝑅2 lies 

in the THz range [14,15]. The energy spectrum exhibits Aharonov-Bohm 

oscillations in magnetic flux with a period of 𝜙0, and a half-integer number of 

flux quanta leads to a degeneracy of the electron energy levels corresponding to 

𝑚 differing by one. This degeneracy can be easily lifted by an electric field 𝐄 

applied in the plane of the ring, which breaks the axial symmetry of the system. 

As such, it can be shown [4, 5] that the lowest two energy levels become separated 

by a gap proportional to the electric field strength ∆𝜀(𝜙 = 𝜙0 2⁄ ) = 𝑒𝐸𝑅. A 

consequence of even relatively mild electric fields 𝑒𝐸𝑅 ~ 0.1𝜀1(0) is the 

suppression of Aharonov-Bohm ground state energy oscillations. However, other 

quantities such as the ring’s dipole moment and polarization-dependent selection 

rules maintain the oscillatory behavior.  

Consider an electron occupying the 𝑛th state Ψ𝑛 of an infinitely thin neutral 

ring. The projection of the dipole moment direction on the lateral electric field is,  

𝑃𝑛 = 𝑒𝑅 ∫ |Ψ𝑛|2 cos 𝜑 𝑑𝜑    (2) 
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where the angular coordinate 𝜑 is measured from the horizontal axis defined by 

the electric field direction. In the absence of an electric field, each state is 

characterized by a value of 𝑚 (Ψ𝑚 = 𝑒𝑖𝑚𝜑/√2𝜋) and the corresponding charge 

density is uniformly spread over the ring. In the presence of a weak field 𝑒𝐸𝑅 ≪

 𝜀1(0) and zero magnetic field, the 𝑚 = 0 ground state picks up only tiny 

contributions from wave functions with 𝑚 ≠ 0 and the charge distribution 

remains predominantly uniformly spread. However, at a degeneracy-inducing 

value of magnetic flux 𝜙 = 𝜙0/2, the ground state 𝜑-dependence is well 

described by sin(𝜑/2), resulting in a shift of the charge density distribution 

against the electric field. Thus, upon changing flux, the ground state goes from 

unpolarized to strongly polarized with a dipole moment oscillation period of 𝜙0. 

Introducing finite temperature into the model requires considering the non-

zero occupations of excited states. Calculations after thermal averaging over all 

states suggest that magneto-oscillations of the dipole moment for nanoscale rings 

are only observable at temperatures below 2K. The system’s inter-level optical 

transitions, however, are less sensitive to the partial occupation of excited states 

at finite temperature. The transition dipole matrix element 𝑃𝑖𝑓(𝜃) for linearly 

polarized radiation incident onto the QR plane dictates the transition rate between 

initial (𝑖) and final (𝑓) states T𝑖𝑓(𝜃) ∝ |𝑃𝑖𝑓(𝜃)|2, and for the considered ring 

takes the form,   

𝑃𝑖𝑓(𝜃) = 𝑒𝑅 ∫ Ψ𝑓
∗Ψ𝑖 cos(𝜃 −𝜑) 𝑑𝜑   (3) 

where 𝜃 is the angle between the projection of linearly polarized radiation onto 

the plane of the QR and the direction of the lateral electric field. Away from the 

degeneracies, transitions between ground and first excited state have no linear 

polarization. At 𝜙 = 𝜙0/2, the transition rate with 𝜃 = 𝜋/2 polarization 

(T01(𝜋/2) ≡ T⊥) reaches its maximum possible value, whereas transitions with 

𝜃 = 0 are forbidden (T01(0) ≡ T|| = 0). Such oscillations of the degree of 

polarization and strong optical anisotropy do not depend on temperature. 
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Magneto-oscillations of both the dipole moment of the ring and the degree of 

polarization of inter-level transitions are plotted in Fig. 1. 

 

 

 

An additional degree of control can be achieved by placing a ring in a THz 

cavity [6]. If the flux piercing the ring is 𝜙 = 𝜙0/2, we require only a small 

change in the in-plane electric field to tune the energy levels of the ring into 

resonance with a single-mode microcavity. Additionally, the QR-microcavity 

coupling constant 𝒢 (for a linearly polarized cavity mode) is proportional to 

𝑃𝑖𝑓(𝜃). Hence, in contrast to quantum dots, for such a QR system both ∆𝜀 and 𝒢 

can be easily controlled with external electric and magnetic fields. Thus, we have 

shown that Aharonov-Bohm rings can act as room-temperature polarization-

sensitive THz detectors and optical magnetometers, or as a system for population 

inversion via optical excitation of an electron into the first excited state across the 

Fig. 1. The upper panel plots 

magneto-oscillations of the 

dipole moment of a ring for 

temperatures ranging from 

0.01𝜀1(0)/𝑘𝐵 (upper curve) to 

0.41𝜀1(0)/𝑘𝐵 (lower curve) 

with increments of 0.1𝜀1(0)/

𝑘𝐵. The lower panel shows 

magneto-oscillations of the 

degree of polarization for 

transitions between the two 

lowest energy levels. The 

subscripts ⊥ and ∥ denote 

transitions polarized 

perpendicular and parallel to 

the electric field respectively. 

Adapted from Ref. [4]. 
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semiconductor with tunable radiative transition to the ground state. If embedded 

in a microcavity the system has a highly controllable emission spectrum and can 

be used as a tunable optical modulator or as a tool for magneto-spectroscopy.  

 Exploiting Aharonov-Bohm effect related properties requires trapping at 

least one-half of the magnetic flux quantum in the ring annulus, which requires 

fields of several Tesla for a ~10nm radius semiconductor ring. We show that the 

use of ultra-strong magnetic fields can be avoided if a ring is placed between two 

lateral gates [7], induce a double quantum well potential along the ring  

               𝑉(𝜑) = 𝛽[(2𝑑 𝑅⁄ )(1 − 𝛾) cos(𝜑) + 𝛾 cos(2𝜑)],   (5) 

where 𝛽 is the potential strength from one gate at a distance 𝑑 from the ring and 

𝛾 characterizes the relative potential strength of the other gate (𝛾 = 1 describes 

equivalent gates). The well parameters and corresponding inter-level separations 

are highly sensitive to the gate voltages. Our analysis for double-gated rings 

shows that selection rules, caused by linearly polarized excitations for inter-level 

dipole transitions, Eq. (3), depend on the polarization vector angle 𝜃 with respect 

to the gates. In Fig. 2, we plot the probabilities of transitions between the ground 

and first (second) excited state for polarization angles 𝜃 = 𝜋/2 (𝜃 = 0), the inset 

schematically represents the selection rules for both identical and asymmetrical 

gate voltages. In striking difference from the planar symmetric double well, the 

ring geometry permits polarization-dependent transitions between the ground and 

second excited states, allowing this system’s use in a three-level lasing scheme. 
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Fig. 2. Square of the dimensionless transition dipole matrix element between initial (𝑖) and 

final (𝑓) single-electron states plotted as a function of 𝛽 and with 𝛾 = 1 (full line), 𝛾 = 1.003 

(dashed line), and 𝛾 = 1.006 (dot-dashed line). The upper branches denote |𝑃01|2/(𝑒𝑅)2 at 

𝜃 = 𝜋/2 and the lower branches denote |𝑃02|2/(𝑒𝑅)2 at 𝜃 = 0. The inset schematically depicts 

the optical selection rules between the lowest eight energy eigenstates. Full blue arrows are 

allowed transitions when 𝛾 = 1, the red dot-dashed arrows are forbidden transitions which 

become allowed when 𝛾 ≠ 1. Adapted from Ref. [7]. 

 

3. NANOHELICES 

The helical form is prevalent throughout nature, not least of all contributing 

to the structure of DNA. Nanohelices have been fabricated in semiconductor 

systems [16], and for a certain type of chiral carbon nanotubes all their atoms lie 

on a single helix [8,9]. Here we show that a nanohelix subjected to an electric 

field normal to its axis behaves like a superlattice with tuneable parameters.  

The problem of an ideal helix subjected to an electric field normal to its axis 

[8,10] is mathematically equivalent to that of a QR pierced by a flux and subjected 

to an in-plane electric field. The role of the flux is played by the electron 
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momentum along the helix. The helix geometry (as with the double-gated QR 

system) has the advantage of not needing ultra-high magnetic fields to yield 

desirable physics. 

Let us consider a nanohelix of radius 𝑅, and pitch 𝑑 in an external electric 

field 𝐸⊥ normal to the helix axis. The potential energy of an electron along the 

helical line coordinate 𝑠 is then 

𝑉(𝑠) = 𝑒𝐸⊥𝑅 cos(2𝜋𝑠 𝑙0⁄ )  ,    (6) 

where 𝑙0 = √4𝜋2𝑅2 + 𝑑2 is the length of a single coil. Clearly, 𝑉(𝑠) is periodic 

with period 𝑙0 significantly larger than the interatomic distance, resulting in 

typical superlattice behaviour with tuneable electronic properties. The energy of 

an electron in a field-free helix is 𝜀0(𝑘) = ℏ2𝑘2/2𝑚𝑒
∗ . For weak electric fields 

𝑒𝐸⊥𝑅 ≪ 𝜀0(2𝜋/𝑙0), 𝑉(𝑠) only mixes adjacent states, which gives the spectrum 

   𝜀(𝑘) =
1

2
[𝜀0(𝑘) + 𝜀0 (|𝑘| +

2𝜋

𝑙0
) ] ±

1

2
√[𝜀0(𝑘) + 𝜀0 (|𝑘| +

2𝜋

𝑙0
) ]

2
+ 𝑒𝐸⊥𝑅. (7) 

Thus, a linearly dependent band gap ∆𝜀(𝑘 = ±𝜋/𝑙0) = 𝑒𝐸⊥𝑅 is opened by 𝐸⊥ at 

the first Brillouin zone edges due to the Bragg scattering of electrons from the 

long-range periodic potential. In the limit of strong field 𝑒𝐸⊥𝑅 ≫ 𝜀0(2𝜋/𝑙0) the 

electronic spectrum tends towards dispersionless flat bands well-described by 

energy levels in a harmonic potential [10]. When a longitudinal electric field 𝐸|| 

is also applied to this system [10], such that the semiclassical motion along the 𝑧-

axis is 𝑘(𝑡) = 𝑒𝐸||𝑡/ ℏ, one can see from the drift velocity 𝑣𝑑  plotted as a 

function of applied field in Fig. 3 that beyond a critical field 𝐸|| > 𝐸𝜏 (where 𝐸𝜏 =

ℏ/𝑒𝑑𝜏 and 𝜏 is a scattering time) the decreasing drift velocity implies a negative 

differential conductance. Accounting for tunnelling between the lowest and the 

next band, we find that above a certain field 𝐸|| ≿ 4𝐸𝜏 the drift velocity increases 

once more (corresponding to N-type current-voltage characteristics). 
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Fig. 3. Drift velocity as a function of external longitudinal electric field, without (full red line) 

and with (dashed blue line) the effect of tunneling from the ground band considered. We plot 

here for parameters 𝑒𝐸⊥𝑅 = 0.4𝜀0(𝑑/2𝜋) and 𝜀0(𝑑/2𝜋)𝜏 = 10ℏ, while 𝑣𝑧 is the magnitude 

of the velocity maxima at the Brillouin zone edge in zero external fields. Adapted from Ref. 

[10]. 

 

4. CONCLUSION 

In this paper we have discussed several proposals of using ring-like and 

helical nanostructures in THz optoelectronics. We have shown that the high 

tunability of the electronic properties of these structures in external fields stems 

from their unusual geometries, and we have demonstrated how the corresponding 

phenomena may be exploited for device applications.  
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