

Rare earths in GaN

Jean-Sébastien Filhol¹, M. Shaw², P. Briddon², R. Jones¹

 ¹ Semiconductor department, School of Physics, University of Exeter, Exeter, U.K.
 ² Shool of Natural Science, University of Newcastle Upon Tyne, U.K.

Why rare earths in GaN?

Rare earths intra f transitions are weakly dependent of the matrix \rightarrow Using different R.E. allows to get the primary visible colors \rightarrow Er has an emission at 154 µm \rightarrow GaN:R.E. emission can still be strong at room temperature

Eu:

Er:

Tm:

Red

Blue

Green (+IR)

Emission spectrum of different rare earthes (R.E.) in GaN (A.J. Steckl et al. Compound Semiconductor 2000 6(1) 48)

Computational method

AIMPRO DFT package.

- \rightarrow periodic density functional theory calculations
- \rightarrow LDA approach
- \rightarrow local Gaussian basis set
- → Monkhorst-Pack k-point sampling mesh (MP2 and MP4)
- → Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials
 → unit cell: 72 atoms

Erbium f shell is kept frozen inside the core in R.E.³⁺ structure

Pseudopotential validation

Rare earth nitride Nitride

	EuN	ErN	TmN
Lattice parameter	4.91 Å	4.74 Å	4.70 Å
(exp.)	(5.01 Å)	(4.84 Å)	(4.81 Å)
Bulk modulus	179 GPa	195 GPa	201 GPa

Lattice error: ≈2% Band structure Equivalent to previous calculations Eu > Er > Tm

Rare earths in GaN: substitutional Ga site

Er, Eu and Tm in Ga substitutional sites. - the local symmetry is C_{3v} -compressive strain of the GaN lattice around the R.E. - Er,Tm strain is 9% - Eu strain is 12 %

Geometry of the R.E. substitutional site

GaN:X	X-N ₁	X-N ₂	X-Ga ₁	X-Ga ₂	1 S Morishima et al
	(3 bonds)	(1 bond)	(9 bonds)	(3 bonds)	internet publication.
GaN:Eu	2.18 Å	2.22 Å	3.23 Å	3.27 Å	2. Citrin et al. 2000 Appl. Phys. Lett. vo
(exp.)	$(2.26 \text{ Å})^1$		$(3.32 \text{ Å})^1$		76 p2865
GaN:Er	2.13 Å	2.16 Å	3.22 Å	3.26 Å	Tm < Er < Eu
(exp.)	$(2.17 \text{ Å})^2$		$(3.26 \text{ Å})^2$		Y
GaN:Tm	2.12 Å	2.15 Å	3.22 Å	3.25 Å	

→Good agreement between the calculations and the EXAFS results →Very short R.E.- N bond (0.2 Å shorter than in the R.E. Nitride)

 \rightarrow The effect of the R.E. in the Ga site is weak²:

- small increase of the gap (DFT) by 0.1 eV
- the band structure only a little modified: level around at Fermi level (see around H)

 \rightarrow very shallow donor above the VB?

Rare earth luminescence in semiconductors

-Rare earth induced shallow donor level

- \rightarrow exciton trap
- \rightarrow low energy trap : high quenching with temperature increase

R.E. in interstitial defects

Low local symmetry: C_{1h} The R.E. atom tends to displace a Ga

R.E._(int.) + Ga_(Ga) \rightarrow R.E._(Ga)+ Ga_(int.) ΔE (Eu) = -900 meV ΔE (Er) = -640 meV ΔE (Tm) = -630 meV Exothermic reaction

(Å)	X-N ₁	X-N ₂ (2)	$X-N_3(2)$	X-Ga ₁	$X-Ga_2(2)$	$X-Ga_3(2)$
Eu	2.16	2.33	2.40	2.42	2.57	2.72
Er	2.11	2.29	2.35	2.38	2.54	2.70
Tm	2.10	2.28	2.35	2.37	2.54	2.69

→ R.E. atoms tend to be in substitutional Ga site in GaN
→ but interstitial structure gives a mid-gap level

Electronic properties of R.E. in interstitial sites

→ n type
→ the gap is mostly
unchanged
→ shallow effective mass
donor level
→ interstitial structure
present mid-gap donor

Candidate for the deep defect related with low quenching ? Interaction of Er with O in GaN Study of O in N site and Er in Ga site

O-R.E. bonds are the only ones stronger than N-R.E.

Structure ErO Er-O: 2.11 Å, Er-N: 2.11 Å **ErO₃** Er-O: 2.10 Å, Er-N: 2.11 Å

Formation of the ErO_x clusters

$GaN:Er + xGaN:O \rightarrow GaN:ErO_x$

The Er-O bond formation is much weaker than in Si: - in Si, Er-O ≈ 3 eV - in GaN, Er-O ≈ 0.4 eV →Er-N bond is already very strong

ErO₂ are favoured structures

→ The ErO_x formation is going to be sensitive to the annealing temperature → ErO_2 clusters are expected to form in GaN

Electronic structure of ErOx in GaN

-O in GaN is a n type dopant:

-Linear decrease of the band gap with the amount of O -Shallow to deep level in the band gap (ErO_2 shows a gap decrease of 0.2 eV)

Conclusion of R.E. in GaN

R.E. in a Ga site weakly modify the structure of GaN:

→ R.E. tends to be in a Ga site.
→ Er (in Ga site) doesn't modify the GaN structure much
→ limited stress caused by R.E. (only 12% strain in the R.E.-N)
R.E.are easily incorporated in GaN

R.E. in interstitial site induce mid-gap levels

The affinity of Er for O is weak in GaN \rightarrow Er – O interaction exists in GaN ErO_x structures are expected in GaN

The theoretical calculations seem to reproduce well the behaviour of R.E. in GaN. Perspective: R.E. interaction with vacancies and C.