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Thinning down of thermal conductivity in ultrashort period superlattices
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We present numerical results for the reduction of the lattice thermal conductivity tensor components {κα,β} in
ultrashort period (Si)n(Ge)n[001] superlattices, with 1 � n � 8, where n represents the number of atomic bilayers.
The calculations are made within the single-mode relaxation-time approximation, accounting for interatomic
bond length relaxation and employing phonon dispersion relations obtained from density functional perturbation
theory, a model anharmonic Hamiltonian to deal with three-phonon interactions involving acoustic as well as
optical phonons in a two-material superlattice structure, and an improved scheme for phonon scattering due to
mass smudging at interfaces. The cross-plane component of the conductivity is around 4.1 times smaller than
the in-plane component for the n = 8 case at room temperature and an interface mass mixing (IMS) scattering
strength of 0.05. Both the in-plane and cross-plane components of the conductivity decrease sharply with the
superlattice period when the strength of the IMS scattering is kept constant. Incorporating physical considerations
into the behavior of the IMS scattering, we predict a minimum of the thermal conductivity for n ≈ 4. We estimate
that a small amount of interface mass smudging results in a reduction of around 3%–14% in the zz conductivity
component for temperatures of 100 to 700 K when boundary scattering is relatively weak. We estimate relevant
phonon scattering rates to explain available experimental conductivity measurements on a system comparable in
size to the (8,8) superlattice.
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I. INTRODUCTION

The recent renaissance of interest in the thermoelec-
tric effect has been driven by the prospect of a dramatic
increase in the efficiency of thermoelectric conversion in
various compounds through nanostructuring,1,2 an improve-
ment which would entail that such thermoelectric materials
would now be eminently suitable for industrial applications.
Much of the discussion centers around which components
of the dimensionless figure of merit function ZT should be
enhanced or reduced in order to best increase the efficiency
of nanostructured systems. It is generally agreed that reducing
the lattice contribution to the total thermal conductivity (κph)
of the system is a promising direction in this respect.

Over the past 50 years, the most routinely employed
theoretical approach for the calculation of the lattice ther-
mal conductivity has been the single-mode relaxation-time
method, based on the Boltzmann transport theory and evalu-
ated within the isotropic continuum scheme (see Ref. 3 and
references therein). This and other methods have successfully
been applied to explain results for bulk insulators and
semiconductors, but they generally require the use of several
adjustable parameters in expressing the phonon anharmonic
relaxation rates (see, e.g., the discussion presented in Ref. 4).
Such schemes lack predictive power and are incapable of
providing numerically trustworthy results for nanostructured
materials. This limitation arises for several reasons: (i) the
large unit cells required to treat nanostructured materials result
in many phonon branches, with many exhibiting anisotropic
dispersion relations that can be significantly different from
bulk results, (ii) atomic vibrations are phase correlated within a
repeat period in composite systems such as superlattices where
more than one material is present in an ordered fashion, and
(iii) even if the most careful growth techniques are employed,
some level of mass mixing at the interfaces between materials
in these ordered composite nanostructures is inevitable. A

combination of these factors alters the phonon group velocity
and phonon lifetime, and hence will significantly change the
thermal conductivity of composite structures when compared
to individual materials. In recent years, a number of research
groups have endeavored to describe the phonon thermal
conductivity through first-principles calculations of phonon
dispersion relations and anharmonic force constants in bulk
and nanostructured solids.5–7 However, these approaches are
not yet fully mature. In addition, first-principles approaches
are not yet able to include the temperature dependence of
the anharmonic force constants, which are important for the
explanation of the thermal conductivity at high temperatures.

Our group has adopted an intermediate-level approach,
in which phonon dispersion relations are computed using
a first-principles approach and the anharmonic crystal po-
tential is expressed in the spirit of the continuum scheme,
allowing for temperature dependence of anharmonic scattering
strength.8–11 In this work, we extend our recent attempt to
study κph in ultrathin SiGe superlattice (SL) systems,8,9,11

incorporating interatomic bond length relaxation and including
the effects of all relevant scattering effects. In order to
achieve this, we use a model anharmonic Hamiltonian that
describes three-phonon interactions involving optical as well
as acoustic phonons in superlattice structures. The proposed
Hamiltonian is a revised version of that presented in our earlier
works.10,11 We also present an improved scheme that accounts
for phonon scattering arising from interface mass mixing in
such structures. Using these features and phonon dispersion
relations obtained from density functional perturbation theory,
we present numerical results on the reduction of the lattice
thermal conductivity in ultrashort period SiGe superlattices.

Before we proceed, we should first clarify our notation.
We will be examining SLs of the form (Si)n(Ge)m[001]. The
value of n or m indicates the number of Si or Ge bilayers that
a given Si or Ge layer contains; we will sometimes denote a
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SL as a (m,n) superlattice, or SL(n, m), and we take n = m

throughout this work. When we speak in terms of Cartesian
axes, we take z to be the growth or cross ([001]) direction
and the in-plane or planar x and y directions to be [110] and
[11̄0], respectively. We estimate relevant phonon scattering
rates to explain the experimental conductivity measurements
by Borca-Tascuic et al.12 on a system comparable in size to
the (8,8) superlattice.

II. THEORETICAL DISCUSSION

A. Thermal conductivity tensor

We calculate the elements of the lattice thermal con-
ductivity tensor κph using the single-mode relaxation-time
approximation3,13

κμν = h̄2

N0�kBT 2

∑
qs

ω2(qs)cs, μ(q)cs, ν(q)τ (qs)n̄qs(n̄qs + 1).

(1)

Here, N0 is the number of unit cells, � is the volume of a unit
cell, and ω(qs) and cs, μ(q) are, respectively, the frequency
and the velocity component in the μth direction of the phonon
mode labeled by (qs), with q as the wave vector and s the
branch label, n̄qs is the equilibrium Bose-Einstein distribution
for that mode, and τ (qs) is the relaxation time of phonons in
their single modes {qs}. It is clear from the above equation that
numerically accurate estimates of three important quantities
are required for the calculation of the conductivity tensor.
These are phonon dispersion relations, velocity components,
and the total relaxation time for a given makeup of the
superlattice.

The total relaxation time τ (qs) depends on various scatter-
ing processes as follows:

τ−1(qs) = τ−1
LB (qs) + τ−1

MD(qs) + τ−1
AL (qs) + τ−1

el-ph(qs)

+ τ−1
IMS(qs) + τ−1

IDS(qs) + τ−1
AH(qs). (2)

Here, the contributions to the relaxation time are boundary
scattering [τLB(qs)], isotopic and other point-mass-defect scat-
tering [τMD(qs)], alloy scattering [τAL(qs)], electron-phonon
scattering [τel-ph(qs)], interface mass mixing scattering (IMS)
[τIMS(qs)], interface defect scattering (IDS) [τIDS(qs)], and
anharmonic scattering [τAH(qs)].

In this work, we restrict ourselves to undoped ultrathin
(Si)n(Ge)n[001] SLs, with 1 � n � 8, entailing that we can
neglect the contribution τ−1

el-ph(qs). The alloy scattering is
included only for SL (1,1), which is treated as a Si(50%)-
Ge(50%) alloy. For SLs with n > 1, we do not allow full
alloy scattering, but instead only the appropriate degree of
isotope and other point-defect scattering in each layer. The
term τ−1

IDS(qs) can be thought of as arising from several
sources: point defects at or near Si-Ge interfaces, interface
strain resulting from lattice mismatch between Si and Ge,
and the development of interface dislocations in thick Si-Ge
superlattices.14,15 The first two contributions can be expected
to depend on the phonon mode in the same manner as is
expected for the point-defect contribution τ−1

MD(qs) and so are
absorbed into it. The second contribution will be ignored, as
dislocations are not expected to develop for the ultrathin SLs

considered in this work, whose layer thicknesses are below the
critical thickness (equivalent to n ≈ 10).14,15 Our treatment of
boundary scattering, point-mass-defect scattering, and alloy
scattering is the same as described in an earlier publication.10

In that work, it was concluded that in order to successfully
explain the conductivity of a Si-Ge alloy, an increased strength
of the combined mass-defect and alloy scattering is required. In
what follows, we will discuss phonon scattering mechanisms
which rely on the formation of a superlattice.

B. Phonon scattering due to mass mixing
across interfaces (IMS)

In previous works, we formulated the phonon scattering
due to mass mixing across interfaces (IMS) by considering
a periodic unreconstructed superlattice A(m)/B(n) with m

layers of material A and n layers of material B.8,9 However, in
this work we adopt a revised scheme for the probability of a
given layer mixing. We express the phonon relaxation rate as

τ−1
IMS(qs)

= π
IMS

6N0

∑
qs

ω(qs)ω(q ′s ′)δ[ω(qs) − ω(q ′s ′)]
(n̄q ′s ′ + 1)

(n̄qs + 1)
,

(3)

where


IMS = P
(

�M

M

)2([
1 − eAe′

A

eBe′
B

]2

+
[

1 − eBe′
B

eAe′
A

]2)
. (4)

Here, M = (mMA + nMB) and �M = |MA − MB |. Follow-
ing Refs. 8 and 9 we use the solution of the one-dimensional
diatomic linear chain model (along the superlattice growth
direction) to determine the ratio of the amplitudes of the
eigenvectors eA and eB :

eB

eA

=
[

1
M0

− �
(

1
M

)]
cos(lzqz)[(

1
M0

)2 + {
�

(
1
M

)}2
sin2(lzqz)

]1/2 − �
(

1
M

) , (5)

where lz is the superlattice period in the z direction, M0 =
(M−1

A + M−1
B )/2, and �(1/M) = (M−1

A − M−1
B )/2. We de-

scribe our scheme for determining P in Appendix A, and
provide further discussion on its choice in a later section.

C. Phonon anharmonic scattering rate

Following the basic theory presented in the book by
Ziman16 (and references therein), in earlier publications (see,
e.g., Refs. 3 and 17) we have developed an expression for the
cubic anharmonicity in an elastic continuum. This has been
successfully employed in treating three-phonon interactions
in bulk materials, but only when describing acoustic phonons
participating in processes of the type ac + ac ↔ ac. In our
recent publications,8–10 we developed a revised version of the
anharmonic Hamiltonian for bulk materials that can include
all allowed three-phonon processes involving optical as well
as acoustic modes. The basic physical considerations behind
that approach are rooted in the theory advocated by Klemens18

and Ridley and Gupta.19 In this work, we use a version of the
anharmonic Hamiltonian that accounts for the presence of two
material species in a superlattice structure of the type A/B,
made of alternating layers of materials A and B. Following
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the discussions in Refs. 9–11 and 20 and in Appendix B,
we express the anharmonic phonon relaxation rate in such a
superlattice structure in the form

τ−1
AH(qs) = πh̄γ̄ 2

ρN0�c̄2

∑
q ′s ′, q ′′s ′′, G

(Rqs, q ′s ′, q ′′s ′′ )2

ω(qs)ω(q ′s ′)ω(q ′′s ′′)

×D(q, q ′,q ′′)
[
n̄q ′s ′ (n̄q ′′s ′′ + 1)

(n̄qs + 1)
δ[ω(qs) + ω(q ′s ′)

−ω(q ′′s ′′)]δq+q ′, q ′′+G + 1

2

n̄q ′s ′ n̄q ′′s ′′

n̄qs

× δ[ω(qs) − ω(q ′s ′) − ω(q ′′s ′′)]δq+G, q ′+q ′′

]
, (6)

where ρ is the average mass density in the superlattice struc-
ture, G is a reciprocal lattice vector, c̄ is the long-wavelength
acoustic phonon speed, and γ̄ is the mode average of the
rescaled Grüneissen constant (as defined in the Appendix of
Ref. 10). The term R can be expressed as

R = c̄2Bmodified
i,j,k

= [
√

ω(i)ω(j )[ω(i) + ω(j )]|ω
(k) − ω(k)|
+ similar terms with i, j, and k interchanged]/3!,

(7)

as discussed in Appendix B. The dual-mass term D(q, q ′,q ′′)
arises from the composite nature of the superlattice (i.e.,
presence of materials A and B). This term is interlinked
with the onset of mini-umklapp anharmonic processes20

governed by additional reciprocal translation vectors that are
generated upon the formation of the superlattice periodicity.
The following simple analytical expression for this term along
the A/B superlattice growth direction can be obtained by
considering the diatomic linear chain model:20

D(q, q ′,q ′′) = 1

64

( AAB

2ρ
3/2
A

+ ABA

2ρ
3/2
B

)2

(8)

with ρA(B) being the density of material A(B) and

Aij = 1 + ρ
1/2
i

ρ
1/2
j

(
ej

ei

+ e′
j

e′
i

+ e′′
j

e′′
i

)

+ ρi

ρj

(
ej e

′
j

eie
′
i

+ e′
j e

′′
j

e′
ie

′′
i

+ ej e
′′
j

eie
′′
i

)
+ ρ

3/2
i

ρ
3/2
j

(
ej e

′
j e

′′
j

eie
′
ie

′′
i

)
, (9)

eA and eB being the vibrational eigenvectors in segments A

and B, respectively.
It could be argued that all required phonon harmonic

eigensolutions (viz., ω, and eA and eB) of the system may
be obtained from ab initio calculations. While that is true
in principle, we used the simple analytical expression in
Eq. (5) for the ratio of the eigenvectors eA and eB and the
above analytical descriptions of τ−1

AH(qs) so as to ensure that
calculations were both tractable and physically transparent.
Our adoption of this manner of approach is defended in more
detail in Ref. 10.

III. COMPUTATIONAL CONSIDERATIONS AND CHOICE
OF PARAMETERS

A. Computational details

As per Ref. 11, relaxed interatomic bond lengths and the
lattice constant in the superlattice structures (Si)n(Ge)n[001]
where 1 � n � 8 were determined by using the total en-
ergy and force methods. The phonon eigensolutions for
the superlattice structures were generated using the density
functional perturbation theory components of the QUANTUM

ESPRESSO package,21 utilizing the local density approximation
and norm-conserving pseudopotentials,22 a lattice constant of
ao = 5.54 Å, and a plane-wave basis up to the kinetic energy
cutoff of 15 Ry. Brillouin-zone summations required for the
electronic (phonon) part of the calculations were performed
with 10 × 10 × 2 shifted (unshifted) Monkhorst-Pack (MP)
grids.23 From the resulting interatomic force constants, we
generated phonon eigensolutions on a finer unshifted MP
grid 16 × 16 × 12 for all superlattices, in order to ensure a
reasonable convergence of κph.

Phonon velocity components were computed using the
finite difference method: cs, μ = [ω({q + �q}s) + ω({q −
�q}s)]/2�qμ, with �q considered typically as 0.05q. We ap-
proximated the momentum conservation conditions in Eq. (6)
by using suitable cutoffs for phonon wave-vector components
along the x, y, and z directions and the Dirac delta functions
governing energy conservation in Eqs. (3) and (6) were
replaced by Gaussian functions, as described in Ref. 10. The
parameter σ which controls the spread of the Gaussian function
was selected so that test phonon density of states data produced
by our thermal conductivity code approximated the features
of the phonon density of states plot produced through using
post-processing routines in the QUANTUM ESPRESSO package.
Brillouin-zone summations required for the relaxation times
and the thermal conductivity were carried out using the shifted
16 × 16 × 12 MP grids.

We checked the convergence of the components of κ(≡κph)
on 11 × 11 × 8, 14 × 14 × 10, 16 × 16 × 12, and 20 × 20 ×
14 grids for (n,n) SLs, with n = 1 and 2, at T = 300 and
1000 K for a mass-defect scaling P = 4.5, γ̄ as described
in the subsequent section, LB = 4.4 mm, and P = 0.05 for
n = 2 (there is no IMS scattering for n = 1). The worst (best)
convergence when moving from 11 × 11 × 8 to 14 × 14 × 10
was 127% (60%) for the n = 1 (2) κyy (κxx) component at 1000
K (300 K), for 14 × 14 × 10 to 16 × 16 × 12 37% (5%) for the
n = 2 (1) κzz (κzz) component at 300 K, and for 16 × 16 × 12
to 20 × 20 × 14 62% (32%) for the n = 2 (1) κzz (κxx)
component at 1000 K. (Percentages are determined relative to
the smallest value.) This suggests either that the components
of κ converge in an oscillatory fashion, or that some numerical
instability has set in for the finest grid size; alas, we lack the
computational resources to ascertain which is the case. We
therefore chose the 16 × 16 × 12 grid as the best available. It
should be noted that these are something of a worst-case ex-
ample; similar calculations carried out at LB = 3.0 × 10−7 m
showed a similar trend as we increased the density of q points,
however, the percentage difference between the results of
subsequent q grids was much smaller (e.g., for the 16 × 16 ×
12 to 20 × 20 × 14 shift, the worst values are 31% for n = 1
and 10% for n = 2 in both in-plane directions at 1000 K).
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B. Selection of semiempirical anharmonic
scattering parameters

When dealing with three-phonon umklapp (U) processes,
we should consider complete shells of reciprocal translation
vectors G. For bulk Si and Ge, there are eight such vectors of
magnitude

√
3 and six further vectors of magnitude 2 in units

of 2π/a0, where a0 is the cubic lattice constant. Considering
only the first shell of eight vectors is usually sufficient for a
satisfactory evaluation of the three-phonon umklapp relaxation
rate; the addition of the second shell, containing six vectors,
is more than adequate. To ensure that the U processes are
well accounted for, we thus included all G vectors up to the
magnitude of 2 × (2π/a0) for all the superlattice structures
considered in this work. This results in 20 vectors for SL (1,1)
and 28 vectors for SL (n,n), n � 2.

As mentioned above, our theory of the cubic crystal Hamil-
tonian (and thus of the anharmonic phonon relaxation time) is
based on a reasonable choice of the long-wavelength limit of
the rescaled Grüneisen constant γ̄ for the superlattice structure.
We observe that the choice of γ̄ in the present version of the
theory will be different from the choice made in our previous
works, due to the use of Bmodified

i,j,k in the present theory rather
than the Bi,j,k used in our previous works (see Appendix B).
There are two factors that need to be kept in mind when select-
ing a value of γ̄ for the thermal conductivity calculations. One
is that a choice must be made that can be related to the values
for bulk Si and Ge materials. The second is that as the mode
average of the Grüneisen constant γ is highly temperature
dependent for bulk Si and Ge,24,25 we should expect the same
for the Si/Ge superlattices. At low temperatures, γ usually
shows an increase with T .26 Test calculations at temperature
above 150 K for the (1,1) SL indicated that the following
temperature-dependent form of γ̄ is a reasonable choice:

γ̄ =
{

γ0, T < Tc

γ0
(
1 + (T −Tc)

Tc

)nγ
, T � Tc

(10)

with γ0 = 0.45, nγ = 0.56, and Tc = 150 K. The choice of
these parameters produces values of γ̄ that lie intermediate
to values obtained experimentally for bulk Si and Ge, and
close to the value for SiGe alloys in the temperature range
150–300 K.25

C. Modeling P(n), the interface mass-mixing probability factor

Interface mass smudging is an unavoidable reality which
is usually unpredictable and dependent on superlattice
growth conditions. Thus, theoretical investigations of phonon-
interface scattering must be made by modeling P(n), the
interface mass-mixing probability factor, in a physically
reasonable manner. Note that P is the overall probability that
some Si bilayer exchanges with a Ge bilayer.

We shall examine the effects of a constant value of P(n) =
0.05, but we shall also consider the effects of allowing it to
vary with n. What does this variation mean in physical terms?
Let us assume a set of superlattices of various n, that are
identical in all ways other than those which we explicitly
mention. Let us assume that interface mixing occurs only
between a fixed number of bilayers or monolayers that lie
immediately on either side of each Si-Ge interface, and that

the proportion of mixing across each interface is identical (as
is the case in Refs. 8 and 9 and seems to be the case in the
DFPT calculation of Ref. 7). We will constrain ourselves to a
single cell of such a system, where there are two interfaces and
so the total proportion of mixing on either side of an interface
per cell is twice that of the proportion per interface. The overall
probability P of some Si bilayer exchanges with a Ge bilayer
must scale with the inverse of n because, as we increase n, we
keep both the number of bilayers undergoing exchange fixed
and the proportion of mixing in those bilayers the same, but
the number of bilayers which are not permitted to undergo
interchange increases. Essentially, while the proportion of
bilayers adjacent to the interface undergoing exchange does
not change with n, the overall proportion of layers undergoing
exchange must decrease as the number of bilayers has
increased, meaning that P ∝ (n − 2 + B)−1 (for n = 2 has no
bilayers where mixing does not occur, and B is a constant set
to unity so that P is equal to twice the proportion of exchange
at that thickness.)

In order to examine the effect of a simple form of variation
of P on κzz, we shall consider the following forms of P ,
inspired by the proportion of mixing in the interface-adjacent
layers of Landry and McGaughey’s27 molecular dynamics
calculation:

PA = 0.24

n − 1
, PB = 0.48

n − 1
. (11)

Here, P falls off in a fashion proportional to the number
of bilayers separating the interface. PA corresponds to a
mixing proportion of 0.12 per interface; this is probably an
underestimate since Ref. 27 makes use of a slightly more
complicated IMS distribution and so we provide an upper
bound on its effect through using PB , which assumes a mixing
proportion of 0.24 per interface.

The assumption that only interface-adjacent bilayers may
undergo mass mixing is questionable, and so some method
of deriving P from a more general underlying distribution
is desirable. One can, for example, choose a purely empirical
distribution (as in Ref. 27), but in what follows we shall mostly
be interested in a more theoretical account.

The full details of our model are provided in Appendix A,
but we shall summarize the basic ideas here for clarity: we
take each Si bilayer in the unit cell to have a probability of
exchanging itself with a given Ge bilayer that is inversely
proportional to the distance between them, and this probability
is taken as giving the proportion of such exchanges that occur
in a given sample. The rate of the falloff of this probability with
distance is controlled by α (larger α entails a faster falloff),
and the probability of exchange between two adjacent bilayers
is controlled by B (a smaller B means a larger probability
of exchange); we fix B = 1 in what follows. From this, we
may calculate an overall value of P which can be used. We
shall examine the effects of a “soft” decay of this probability
characterized by α = 2.0 and a “hard” decay characterized
by a choice of α = 5.0. The values of P for each n and the
probability that a given bilayer in one half of the SL might
exchange with any other bilayer in the other half are plotted
in Fig. 1. For both parameter choices, we can see from the
plots of the exchange probability against bilayer number (1
being the bilayer closest to the leftmost interface, n being that
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FIG. 1. (Color online) Variation in the probability P that a given
Si(Ge) bilayer will exchange with a Ge(Si) bilayer: (a) with the
number of bilayers n of each species within a superlattice unit cell,
(b) for the parameters α = 2.0, B = 1.0 and (c) for α = 5.0, B = 1.0.

closest to the rightmost interface) that mass mixing is most
pronounced in the interface layers; however, for the α = 5.0
case, the exchange probability drops off rapidly as one moves
further away from an interface, becoming almost negligible
for the central layers of the larger lattices. This is not the case
for α = 2.0; here, there remains an appreciable probability of
mixing even in the central layers of the larger superlattices.
The upshot of these differences may be seen in Fig. 1(a); here

we see that P is always larger for the α = 2.0 case, as we
would expect since it indicates a worse quality of interface.

IV. RESULTS AND DISCUSSION

A. Atomic relaxation, phonon dispersion curves,
and phonon velocity

First, we shall summarize some relevant results concerning
atomic relaxation and its effect on the phonon dispersions of
ultrathin SLs presented in a previous study.11 The numerical
values of the cubic lattice constant and the interatomic bond
length resulting from total-energy minimization and force re-
duction are a0 = 5.64 Å, d(Si-Si) = 2.38–2.37 Å, d(Ge-Ge) =
2.42–2.43 Å, and d(Si-Ge) = 2.40 Å. These values are in
agreement with well-known results (Vegard’s law for the
lattice constant; retention of Si-Si and Ge-Ge bond lengths
close to their bulk values; Si-Ge bond length being close
to the weighted average of individual bond lengths), and are
discussed in more detail in Ref. 11.

The phonon dispersion of a superlattice structure is gen-
erally characterized by three features: zone folding (due to
periodicity larger than in bulk structure), the formation of
minigaps in the spectrum, and the confinement (or reduction
in dispersion) of branches. While the magnitudes of minigaps
generally decrease, the degree of confinement increases as the
superlattice periodicity (equivalently, the superlattice index n)
is increased. The enlargement of periodicity along the growth
direction also causes the above characteristics to be present
to some extent in the planar directions. These features can be
clearly seen from a comparison of results presented in Fig. 2
for SL (1,1) and SL (4,4). The most significant changes in the
phonon dispersion curves and density of states are noted for
frequencies above 200 cm−1. For all the SLs studied, the effect
of relaxed atomic geometry is to shift the maximum frequency
upwards. While the general qualitative structure of the density
of states remains unaffected, most of the peaks above 200 cm−1

are shifted upwards. A more detailed examination of the
effects of atomic relaxation on this and other phonon-related
properties of superlattices may be found in Ref. 11.

Our computed average phonon speeds for the acoustic
branches (calculated at the MP grid point closest to 
)
are c̄(acoustic) = 6078, 3614, (4633, 4753, 4821, 5035,
5000) ms−1 for Si bulk, Ge bulk, and SL structures with n =
1–5. The corresponding values when averaged over all phonon
branches and q points are c(all branch and momenta average)
= 3349, 2011, (2855, 2830, 2922, 3223, 3239) ms−1 for Si
bulk, Ge bulk, and SL structures with n = 1–5, respectively.

B. Results for the (1,1) and (8,8) Sls

Figure 3 presents the results of our calculations of the lattice
thermal conductivity tensor components for the (1,1) and (8,8)
superlattices. We provide some discussion on the tensor nature
of the conductivity for both SLs. We also attempt to compare
our results for κzz for the (8,8) SL with measurements made on
a SiGe[001] superlattice of a similar repeat period. In Fig. 3(a),
we present and discuss our phonon conductivity results along
the growth direction κzz for the (1,1) SL. We considered an
effective average sample size LB = 4.4 × 10−3 m (equivalent
to the sample size in the bulk measurements by Glassbrenner
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FIG. 2. Phonon dispersion curves for Si(1)Ge(1)[001] and Si(4)Ge(4)[001] superlattices. [Data for SL (1,1)[001] results originally presented
in Ref. 11.]

and Slack28) and used a scale factor of P = 30.0 for point-
mass-defect scattering of phonons. Use of such a scale
factor was found necessary in order to ensure that the SL
results at high temperature (room temperature and above)
lie intermediate to the experimental “phonon-only” results
for bulk Si and Ge obtained by Glassbrenner and Slack.28

However, at temperatures lower than 100 K, the behavior
deviates strongly from that of the bulk materials. It is worth
remarking that for a successful match between theoretical and
experimental conductivity results for bulk semiconductors,
it is almost always necessary to consider much stronger
point-defect scattering (hence a large-P factor). A similar
observation was made in our previous work when dealing
with the conductivity of a SiGe alloy sample.10 We observe
that SL (1,1) may be viewed as something like a Si0.50Ge0.50

alloy, allowing for a large concentration of point mass defects
in the system. Based on these considerations, we predict that
the low-temperature (below 50 K) lattice thermal conductivity
component κzz of Si(1)Ge(1) would be significantly lower
(by an order of magnitude) than the average of results for
an equivalent bulk Si and Ge system.

We observe that our κzz results for SL (1,1) are at variance
with those presented in the paper by Garg et al.6 who noted that
the conductivity for the thinnest superlattice period is higher
than that of bulk Si and Ge. There are two possible reasons why
our SL (1,1) results might be different from those presented

in Ref. 6. First, Garg et al. performed their calculations using
a fictitious superlattice structure that is made of alternating
atomic layers of Si and Ge. Their structure bears no direct
connection to the realistic SL (1,1) structure considered in our
work, bearing in mind that one must consider atomic bilayers,
not atomic monolayers, for superlattice structures made from
Si and Ge bulk materials. Second, Garg et al. did not include
the effects of phonon scattering from isotopic point defects
and boundaries that are usually present in Si and Ge bulk
materials in their calculations, which will reduce the thermal
conductivity.

In Fig. 3(b), we compare two (8,8) SL calculations with
parameters P = 4.5 and P = 0.05 with the experimental
results of Ref. 12. The boundary length was set to 100 period
value (LB = 4.43 × 10−7 m) as quoted in Ref. 12. We can
see that we have reasonably good qualitative agreement with
experimental results. The agreement is improved if we allow
for some surface roughness and reduce the value of LB to
3 × 10−7 m, around 68% of the sample size. The decrease
in κzz between 200 and 300 K is a little steep (and in fact,
we find that it decreases quite steeply beyond 300 K, unlike
what we might expect from the results of Lee et al.14); this
suggests that our best estimate of γ̄ above 300 K may be
a little high. However, as a first approximation, it should be
sufficient, especially as the experimental behavior of this SL
length is not well established for such high temperatures.
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FIG. 3. (Color online) Lattice thermal conductivity tensor components (κxx , κyy , and κzz) for Si(n)Ge(n)[001] superlattice, where n

represents the number of atomic bilayers. Panel (a) shows our results for the (1,1) SL together with experimental results for bulk Si and Ge read
from Ref. 28. We have used the boundary length and point-mass-defect scale parameters as LB = 4.4 × 10−3 mm and P = 30.0. Panel (b)
shows our results for the (8,8) SL; the in-plane results are for the LB = 3.0 × 10−7 m case. The experimental results from Ref. 12 for a sample
size equivalent to 100 period value can be matched with the choice of the mass-defect scale parameter P = 4.5 and the interface mass-mixing
probability factor P = 0.05. The effect of reducing the LB parameter from the 100 period value is also shown. (Experimental data in both plots
in Fig. 3(a) adapted with permission from figures in Ref. 28. Copyright © American Physical Society.)

We should also caution as to the perils of taking a single
experimental data set from a single sample as wholly definitive;
for example, Huxtable et al.’s29 measurement of a 50-Å SiGe
superlattice displays a discernably lower κzz than Lee et al.’s14

measurement of a SiGe SL of the same length, a discrepancy
that they attribute to the use of a different growth method.
We should also remark that the consideration of a smaller
mass-defect scale factor of P = 4.5 for the (8,8) SL compared
to P = 30.0 for the (1,1) SL is justified: whereas significantly
strong atomic mixing (and thus point-mass-defect scattering)
can take place for the (1,1) SL, the average amount of atomic
mass mixing per period for a good quality (8,8) SL can be
expected to be much smaller.

Our calculations suggest that in general κzz is lower than
κxx . However, the κxx and κzz components for the (1,1) SL
are not very different from each other. To explain this, we
note that this system can be viewed quite similar to bulk alloy
retaining nearly isotropic kappa feature. A clear difference
between the in-plane conductivity components (κxx and κyy)
and the growth direction component (κzz) can be noted from
Fig. 3(b) for the (8,8) SL. Our calculations predict the in-plane
components to be approximately 4.1–4.8 times larger than
the component along the growth direction for the temperature
range considered, with the anisotropy being smaller closer to

T = 300 K. This is qualitatively similar to what is observed
in Yang et al.’s30 measurements of the thermal conductivity
of Si(80 Å)Ge(20 Å) SLs in that the anisotropy decreases as
temperature increases; however, our values of the anisotropy
are smaller. The relative reduction in the κzz component is
obviously due to two main factors: reduced phonon velocity
and the IMS factor.

C. Trend in conductivity results with superlattice period

1. L B = 4.4 × 10−3 m with and without constant IMS

In Fig. 4, we plot the n dependence of κzz for (a) systems
with no IMS scattering and (b) systems with P = 0.05 for
n > 1. In both cases, we have considered the point-mass-defect
scale factor P = 30.0. In general, we can see that the results
with and without the inclusion of IMS are qualitatively
very similar, although not quite identical. Examining the
two-dimensional (2D) plots (a-i) and (b-i), we note that there
exist regions below T � 150 for n = 2–4 where κzz is greater
than the n = 1 result. The point at which they cross below the
n = 1 curve moves to a lower temperature as n is increased;
in the n = 4 case, the presence of IMS scattering moves it to
a slightly lower temperature than is observed in its absence.
This is most likely an effect of the replacement of the alloy
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FIG. 4. (Color online) Results showing the variation of κzz with n in the P = 30, LB = 4.4 × 10−3 m system. Panels (a) and (b) show a 2D
plot (i) including experimental bulk values from Ref. 28 and a 3D plot (ii) of representative values of κzz (in units of W m−1 K−1) between 100
and 700 K. Set (a) has P = 0, (b) has P = 0.05. Panel (c) shows the percentage difference in κzz due to the inclusion of IMS scattering relative
to the P = 0 results for the data points depicted in (a)(ii) and (b)(ii). (Experimental data in Figs. 4(a)(i) and 4(b)(i) adapted with permission
from figures in Ref. 28. Copyright © American Physical Society.)

portion of the mass-defect contribution to scattering with the
IMS contribution for n > 1 combined with the large value of
the P parameter, entailing that the IMS scattering is not strong
enough to compensate for the loss of the alloy scattering in this
system. For n � 3, the high-temperature portions of the curves
lie below the bulk experimental results; for n = 2 the data lie
above or coincident with the Ge bulk data. One striking feature
of these results is that the n = 5 and 6 results are almost equal;
this is unexpected and we do not as yet have an explanation
for it.

The three-dimensional (3D) plots in panels (a-ii) and (b-ii)
are also very similar. They display points at intervals of 100 K
in the range 100 to 700 K for n = 2–6 and n = 8. The general
trend is for κzz to decrease as T increases (as one would expect)
and also as n increases. This last decrease, however, is not
simply related to n, for we begin with a rather shallow decrease
between n = 2 and 3, which becomes more steep for n = 3–4,
levels out and plateaus for n = 4–6, and has begun a further
shallow descent by n = 8. This is not terribly consonant with
experimental results, where one would expect κzz to increase
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with n (at least for the sufficiently large n to which we have
experimental access); this is likely in part a consequence of
our using a constant P , as we shall discuss in the following.

The plot in Fig. 4(c) describes the percentage decrease in
κzz due to the inclusion of IMS scattering, and provides a clear

description of the temperature region where IMS scattering is
dominant in this kind of system; it runs in an approximately
diagonal band from higher temperatures at n = 2 to lower
temperatures at n = 8. On either side of this ridge, scattering
is dominated by a different kind of process: on the left-hand
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FIG. 5. (Color online) Results showing the variation of κzz with n in the P = 4.5, LB = 3.0 × 10−7 m system. Panels (a)–(c) each show a
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side (smaller n, low T ), the dominant processes will be
boundary scattering and mass-defect scattering, and on the
right-hand side (larger n, high T ), anharmonic processes will
dominate. We can see that increasing n shifts the temper-
ature at which each successive process becomes dominant
downwards.

D. Consequences of varying IMS parameter with
SL period index n

Keeping P constant would seem to contradict the exper-
imentally observed behavior of κzz with n. But this should
be unsurprising, for we have established that holding the
proportion of mixing constant as n increases implies that P
decreases. So if P is constant with n, this means that in order
to compensate for the decrease due to the increase in n, the
proportion of mixing in the bilayers adjacent to the interface
must increase and/or mixing must be allowed to occur between
bilayers further from the interfaces. Effectively, fixing P to a
constant value for all n entails that as n is increased, the quality
of interfaces worsens; it is no wonder that κzz might decrease
with n as we see in Fig. 4!

In Fig. 5, we plot 2D and 3D plots of the behavior of
κzz for (a) P = 0.05, (b) PA, and (c) PB , (b) and (c) being
defined in Eq. (11), for the LB = 3.0 × 10−7 m and P = 4.5
system which corresponds more closely to experiment than
the one examined previously. First, let us examine the 2D
plots in Figs. 5(a)–5(c) (i). The general trend for the P =
0.05 case as n and T increase is generally similar to that
observed for the other fixed P = 0.05 systems in that κzz

tends downwards; the exception is n = 6, which manages
to be more or less coincident with the n = 4 curve near
T = 100, but which drops to slightly below n = 5 at high
temperatures. Examining Figs. 5(b) (i) and 5(c) (i), we see that
one clear effect of increasing n consistent with the results
previously discussed is that it lessens the temperature at
which anharmonic effects dominate: the onset is quite rapid
at n = 8, occurring between 200 and 300 K. We now note the
following result of physical consequence, which is that the
behavior of κzz with n is no longer monotonic near T = 100.
Instead [as is also illustrated in Figs. 5(b) (ii) and 5(c) (ii)],
a minimum at n = 4 exists beyond which κzz increases (even
allowing for the n = 8 values being smaller in this region
than the anomalous n = 6 ones, n = 8 is still larger than
n = 5). As T increases and we move into a region where
anharmonic scattering dominates, this behavior dies off and
we see a restoration of the expected monotonic behavior.
This lack of monotonicity for temperatures near 100 K is
likely a consequence of the interaction between the effect of
superlattice size on phonon behavior and the IMS scattering
strength. Broadly, as n increases, the change in velocities
causes κzz to decrease.31,32 This decrease is most pronounced at
small n; for larger n, κzz converges on a fixed value. Below the
minimum, the decrease with n due to the velocity outweighs
any effect that might arise due to the decrease in the the
strength of the IMS scattering as characterized by P; above
this minimum, the effects of IMS scattering dominate, and so
the decrease in P with n causes κzz to increase.

It would be premature to state that a global minimum
at n = 4 would be physically observable; that would await

a proper characterization of the proportion of dislocation
scattering arising from the lattice mismatch of Si and Ge which
is present at n � 10; such scattering might drive κzz for those n

down further still. However, since dislocations are not present
below that critical lattice size,14,15 we can say that for the
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ultrathin SLs with n � 4, we might expect to see an increase
in κzz even for fairly dirty interfaces, provided that the quality
of interface is consistent between samples of different size.

In Fig. 6, we plot some other quantities of interest for a
system with P = 4.5, LB = 3.0 × 10−7 m where the IMS
strength is given by PA. Figure 6(a) shows the behavior
of κxx with T and n; here, we see that at T = 100 K
the conductivity tends to increase with n, whereas at high
temperatures it decreases with n due to the dominance of
anharmonic scattering; note that there is an apparent “kink” in
the behavior of κxx centered at n = 4. This general behavior
and that κxx is much larger for a given n and T than κzz

is most likely due to the absence of an interface in this
direction, although one would also expect IMS scattering to
have some residual effect. Figure 6(b) shows the difference
between κxx and κyy expressed as a percentage of κxx . This
arises as a result of the inequivalency of our chosen x and y

directions as discussed in Ref. 11; as observed for the reduced
conductivity in that study, we find that the difference dies off
as n is increased. Figure 6(c) shows the effects of changing
LB on κzz for a (4,4) SL; the most notable is that as well
as reducing the magnitude of κzz at low T , decreasing LB

also pushes the location of the maximum κzz upwards. This
is important as experimental results such as those of Refs. 12
and 14 typically show a leveling off or a maximum of κzz in the
region of �100 K; this effect is probably in part a consequence
of boundary scattering. This would be consistent with the
experimental and numerical results of Luckyanova et al.7

regarding GaAs/AlAs superlattices, where it has been shown
that at temperatures of less than 300 K, surface roughness
effects such as IMS mixing affect mainly high-frequency
phonons; the low-frequency phonons that conduct the majority
of heat remain coherent and are in fact scattered only by the
boundaries.

Figure 7 displays κzz against n and T for our choices of
α. The general qualitative behavior that we observed with our
simple models is reproduced, and as one might expect the
overall values of κzz for a given n are smaller for the α = 2.0
case, with the (8,8) results being far below the experimental
values, whereas for α = 5.0 only the 300-K point falls outside
of experimental error, and then barely (in order to obtain
fully compatible results, one could reduce P slightly). One
interesting difference is that the minimum κzz near T = 100 K
for the α = 2.0 case is no longer located at n = 4, but at n = 5,
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although the difference is rather small. This suggests that the
precise location of the transition from κzz decreasing as n is
increased to it increasing with n will be somewhat dependent
on interface quality.

The consistently anomalous (6,6) results are deserving
of some discussion. It is clear from our calculations that
there exist values of P(n = 8) < P(n = 6) for which κzz(n =
8) > κzz(n = 8) [for example, if we were to compare the
P(n = 6) result generated with α = 2.0 and the P(n = 8)
result generated with α = 5.0]. This suggests that it is possible
that the models we have used do not quite capture the precise
behavior of P with n; however, it could also be that there is
some small oscillation of κzz with increasing n (even if the
overall trend is upward) or that this is due to a numerical effect
(such as insufficient convergence), or some combination of
the three. Clarification of this issue will have to await more
calculations at larger n, which are unfortunately beyond our
resources at this point in time.

V. SUMMARY AND OUTLOOK

We have performed a systematic theoretical investigation
of the reduction of the lattice thermal conductivity in ultra-
thin Si(n)Ge(n)[001] superlattices, with 1 � n � 8, where
n represents the number of atomic bilayers of a species
within a repeat period. The calculations are performed using
a model anharmonic Hamiltonian describing three-phonon
interactions involving acoustic as well as optical phonons in a
two-material superlattice structure, and an improved scheme
for phonon scattering due to mass smudging at interfaces.
The variation of the components with the superlattice period
and sample temperature have been examined and trends
extracted. The theoretical results for Si(8)Ge(8) have been
successfully compared with experimental measurements for
Si(22 Å)/Ge(22 Å) reported in Ref. 12. We have found that
the cross-planar thermal conductivity is roughly 4.1–4.8 times
smaller than the in-plane thermal conductivities for the (8,8)
case for temperatures between 100 and 300 K for P = 0.05.

We have examined in some detail the effects of various
parametrizations of the IMS scattering as described by the
parameter P . Keeping P constant with n results in a decrease
in κzz (between 3%–14% for a sample size of 4.4 mm); how-
ever, this involves making problematic assumptions regarding
interface quality, which is best described by a P that decreases
with n. Examining various models of the decay of P we have
found that while in general the behavior of κzz at high T shows
a monotonic decrease with n, at T close to 100 K we see that κzz

reaches a minimum at n = 4–5 before beginning to increase.
It is likely that this is because IMS scattering outcompetes the
effect of phonon velocity that is described in Refs. 31 and 32
at larger values of n, so that the decay in P causes κzz to
increase. Note that it can not be said that this minimum is a
global one; that would depend on the effects of dislocation
scattering when the lattice size exceeds n = 10 and is a matter
beyond the scope of this study. We also observe that for the
T = 10–100 K region, boundary scattering is the dominant
effect, consistent with the findings of Ref. 7.

Since the dimensionless thermoelectric figure of merit
parameter ZT is inversely proportional to the sum of the elec-
tronic and phonon contributions to the thermal conductivity,

we can see that the above results have implications with respect
to the thermoelectric efficiency of ultrathin superlattices, in
that we should not expect the very thinnest SLs to be as ther-
moelectrically efficient in the cross-planar direction as slightly
thicker ones in the limit where dislocation effects are unimpor-
tant; moreover, within that limit an optimal SL length where
κzz is at a minimum may exist. However, the precise extent of
any enhancement will be dependent upon how the electronic
components of ZT change upon superlattice formation.

ACKNOWLEDGMENTS

I. O. Thomas acknowledges financial support from EPSRC
(UK) Grant Award No. EP/H046690/1 which funds this work.
The Intel Nehalem (i7) cluster (CERES) at the University of
Exeter was used to perform the calculations in this work.

APPENDIX A: IMS SCATTERING PROBABILITY P

As far as we are aware, there are no systematic theoretical
characterizations of the degree of interface mass mixing in
composite superlattice systems. In order to proceed with a
theoretical discussion of IMS scattering, we must therefore
devise an ad hoc scheme which parametrizes such mixing. We
choose to characterize the strength of the IMS scattering in a
given (n, n) superlattice composed of alternating multilayers
A and B by the probability P of the interchange of a number
of pairs of bilayers, one from one half of A and one from the
neighboring half of B.

A description of the behavior of the IMS scattering strength
with n should, in our view, possess the following desirable
properties:

(i) For no value of n > 1 should the overall probability of
the interchange of a number of bilayers P exceed 0.5.

(ii) The probability of the interchange of a given bilayer
with another should decrease with the distance separating the
two bilayers.

(iii) As n becomes very large and the system becomes
bulklike, P should tend towards 0 as IMS scattering should
become negligible.

In order that P can be properly defined, we shall label
each bilayer in the SL sequentially as l = 1, . . . ,NMAX = 2n,
and also those bilayers in section A of the SL sequentially
as k = 1, . . . ,n. Let us define the probability that a bilayer
labeled k will interchange itself with a bilayer labeled k as

P
kl
SWAP = 1

NMAX(|k − l| − 1 + B)α
, (A1)

where k �= l, and the subtraction of 1 in the denominator arises
so that a pair at the interface (or an adjacent pair) will have
P

kl
SWAP = 1

NMAXBα . The normalizing factor NMAX arises from
a requirement that if α = 0, the sum of the probabilities of
there being a swap and the probability of their being no swap
for a given k are equal, in accordance with the principle of
indifference, i.e.,∑

l, l �=k

P
kl
SWAP + P k

NO SWAP = 1. (A2)

This allows us to say that Bα controls the deviation of
P

kl
SWAP at the interface from what we would “expect” given
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that principle; if Bα > 1, mixing at the interface or between
adjacent pairs is less likely, if Bα < 1 it is more likely. α

controls how quickly the probability of mixing decays with
distance. Note that if B > 1 it is important to check that the
probability distribution satisfies Eq. (A2) and that P k

NO SWAP
has a reasonable value.

A modification must be made to P
kl
SWAP for the purposes of

our calculations so as to include periodicity. In that case, we
must also account for swaps between bilayers in neighboring
cells and bilayers in the cell of interest. We may do this by
modifying the expression for P

kl
SWAP as follows:

P
kl
SWAP = 1

2NMAX

2∑
i

1

(||k − l| − Gi | − 1 + B)α
, (A3)

where G1 = 0 and G2 = NMAX. We are interested in bilayer
exchanges that have some physical effect on the behavior of
the system, that is, where a bilayer labeled k has an exchange
with a bilayer l /∈ {k} (that is, a bilayer in A exchanges with
a bilayer in B). For such exchanges, we define an overall
probability for each k:

P
k
SWAP =

NMAX∑
l /∈{k}

P
kl
SWAP. (A4)

We are ultimately interested in P , the overall probability
of there being some number of interchanges, which will give
us an estimate of the strength of IMS scattering. This is easy
enough to calculate. First, we calculate the probability that a
given bilayer k will not exchange with a bilayer in B:

P
k
NO SWAP = 1 − P

k
SWAP. (A5)

Next, we calculate the probability that no bilayers whatsoever
are exchanged between A and B:

PNO SWAP =
n∏

k=1

P
k
NO SWAP. (A6)

It then follows that

P = 1 − PNO SWAP. (A7)

For the correct choices of B and α, this satisfies the first and
third conditions.

APPENDIX B: ANHARMONIC INTERACTION TERM

We shall begin with the following expression for the
third-order perturbative term in the elastic continuum potential,
suitable for a single (bulk) material

V3 = γ̄

√
h̄3

2ρN0


∑
qs, q′s′ ,

q′′s′′

Bqs, q ′s ′, q ′′s ′′√
ω(qs)ω(q ′s ′)ω(q ′′s ′′)

δq+q′+q′′, G

× (a†
qs − a−qs)(a

†
−q ′s ′ − aq ′s ′ )(a†

q ′′s ′′ − a−q ′s ′ ), (B1)

with a
†
qs (aqs) being the phonon creation (annihilation)

operator for a given mode qs, ρ being mass density, and cs

being the speed of a phonon belonging to branch s. In Ref. 10,
we expressed the term B as

Bi,j,k = [
√

ω(i)ω(j )[ω(i) + ω(j )]|ω
(k) − ω(k)|/c(k)

+ similar terms with i, j, and k interchanged]/3!,

(B2)

where i, j , k label phonon modes, and c(k) is the momentum-
dependent, i.e., phase speed for the mode k. We take this
opportunity to assert that in the spirit of the continuum
scheme c(k) should be considered as the phase speed in
the long-wavelength acoustic limit, i.e., for acoustic phonon
wave vectors close to zero. We thus replace c(k) with a
branch-average speed c̄ obtained from the acoustic branches
in the long-wavelength limit (the q point closest to 
), and
replace B with Bmodified as

Bmodified
i,j,k

= [
√

ω(i)ω(j )[ω(i) + ω(j )]|ω
(k) − ω(k)|
+ similar terms with i, j, and k interchanged]/(6c̄).

(B3)

For a composite material system, such as a superlattice,
the third-order force constants implicitly included in Eq. (B1)
should be modified to account for two new features:20 (i) the
presence of more than one material species, and (ii) additional
reciprocal translation vectors resulting from superlattice peri-
odicity. Following Ren and Dow20 and some lengthy algebraic
steps, the application of Fermi’s golden rule results in the
expression for phonon anharmonic relaxation rate as presented
in Sec. II C of this paper.
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