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Abstract
We look at four length scales associated with the surface plasmon–polariton
(SPP) modes in the visible and near-infrared. We examine some of the
consequences of these length scales for exploiting surface plasmon–polariton
modes as a means to provide sub-wavelength optics. The four length scales
discussed are the SPP wavelength, the SPP propagation distance, and the
penetration depths of the field associated with the SPP into the dielectric and
metal media that bound the interface that supports the SPP. Length scales
spanning seven orders of magnitude, from nanometres to centimetres, are of
relevance to SPPs. This paper concludes by identifying some of the
challenges that lie ahead.
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1. Introduction

Understanding and controlling the interaction between light
and matter is of fundamental importance to a wide range of
science and technology. More that a century ago puzzles
over blackbody radiation and atomic line spectra led to the
birth of quantum mechanics and there have been innumerable
developments since, not least the laser. We can also use light
to control matter, as for example in the use of optical tweezers
to manipulate cells. When it comes to light, metals are usually
thought of as just mirrors; however, there is a fascinating light–
matter interaction involving metals—the surface plasmon–
polariton—that enables us to use metals as much more
than just mirrors. Surface plasmon–polaritons (SPPs) are
electromagnetic modes that arise from the interaction between
light and mobile surface charges, typically the conduction
electrons in metals. This light–matter interaction leads to
SPP modes having greater momentum than light of the same
frequency; consequently the electromagnetic fields associated
with them cannot propagate away from the surface: rather, the
field decays exponentially in strength with distance away from
the surface. SPP modes on a planar metal surface are thus
bound to that surface and guided by it, propagating until their
energy is dissipated as heat in the metal.

The topic of surface plasmon–polaritons has a history
going back more than a hundred years, but it has recently
attracted renewed interest for a variety of reasons. In part

this is because there are now a variety of routine nanoscale
fabrication technologies that allow suitable sized structures to
be made and explored as a way of harnessing SPPs. Surface
plasmon–polaritons are also being developed as bio-molecule
sensors [1], they can help us to characterize the optical
properties of complex structures such as liquid crystals [2], and
they are seen as one possible route in the development of sub-
wavelength optics [3]; they are also quite simply fascinating. In
the context of sub-wavelength optics it is designed nanoscale
structuring of the metal surface that is opening up ways
to control surface plasmon–polaritons with unprecedented
finesse. It is the convergence of an understanding of
how nanoscale features change surface plasmon–polariton
properties together with the use of fabrication tools based on
nanotechnology that makes this a topical and dynamic research
area.

The aim of this paper is to give a didactic introduction to
the properties of surface plasmon–polaritons with an emphasis
on those aspects that underlie the recent surge in activity.
Attention will be focused on the different length scales that
are important for surface plasmon–polaritons; as we will see,
these length scales span seven orders of magnitude. These
length scales are the SPP propagation length, δSPP, the SPP
wavelength, λSPP, the penetration depth of the electromagnetic
field associated with the SPP mode into the dielectric medium,
δd, and the penetration depth of the field into the metal, δm.
These different length scales are indicated schematically in
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Figure 1. The different length scales of importance for surface plasmon–polaritons in the visible and near-infrared are indicated on a
logarithmic scale. At the single nanometre end the non-local (spatially dispersive) response of real metals provides a lower limit. At the other
end, the propagation length of long-range surface plasmon–polaritons (LRSPPs) has so far reached centimetres. The important length scales
thus span seven orders of magnitude.

figure 1; in what follows we show where these length scales
come from and examine their implications. Even though
the approach adopted is an approximate one, making many
simplifying assumptions, it is enough to allow us to appreciate
the potential that SPPs offer for sub-wavelength optics.

1.1. Structure of paper

This paper is organized as follows. We begin by developing the
concept of the surface plasmon–polariton dispersion diagram,
an understanding of which greatly helps in exploring many
aspects of SPP physics. The four different length scales
associated with SPPs are then explored in detail and their
physical implications discussed. This paper concludes by
looking at some of the challenges that lie ahead. We should
point out that we have considered only silver as the metal, and
only air as the overlying dielectric medium. However, for our
purposes here, that of investigating the different length scales,
this restricted analysis is sufficient to give us considerable
insight.

2. The surface plasmon–polariton dispersion relation

Much can be understood about SPPs by examining their
dispersion relation, the relationship between the angular
frequency (ω) and in-plane wavevector (k‖) of SPP modes.
The in-plane wavevector is the wavevector of the mode in the
plane of the surface along which it propagates. For light in
free space the wavevector (k0) is simply given by k0 = 2π/λ0.
In a quantum picture the momentum of the associated photon
is h̄k0, and the dispersion relationship between frequency and
wavevector of the photon is simply k0 = ω/c, c being the
speed of light. In a medium of relative permittivity εd (and
thus refractive index nd = √

εd), the dispersion relation for
the photon becomes k = ndk0 = √

εdk0. The dispersion
relationship between the frequency and in-plane wavevector
for SPPs propagating along the interface between a metal and
a dielectric can be found in a number of ways; for example,
by looking for surface mode solutions of Maxwell’s equations
under appropriate boundary conditions, the dispersion relation
is [4]

kSPP = ω

c

√
εmεd

εm + εd
(1)

where the metal and dielectric are characterized by relative
permittivities (dielectric functions) εm and εd respectively. The
relative permittivity of the dielectric is usually only weakly
dispersive so that most of the interesting physics arises from
the intriguing behaviour of the relative permittivity of metals.

The central role of the relative permittivity of the metal,
εm, can be seen by considering what requirements are placed
on the possible values that εm can take if SPPs are to be
supported by the interface. SPPs involve charges at the surface
of the metal and for such charges to be sustained the electric
field normal to the interface (Ez) must change sign across
the interface. Since the displacement field in the surface
normal direction (Dz) has to be conserved and Dz and Ez

are related by Dz = εEz , it follows that εm and εd must be
of opposite sign if the interface is to support SPPs. Since
dielectrics have a positive (and real) εd, this means that εm

must be real and negative. This condition is largely fulfilled by
several metals in the visible and near-infrared (near-IR) parts
of the spectrum for which εm has a large negative real part
(the small positive imaginary part being largely associated with
absorption and scattering losses in the metal). For example,
gold at a wavelength of 830 nm has a relative permittivity of
εm ≈ −29 + 2.1i . The relative permittivities of many metals
have been measured and tabulated [5] but at this stage in our
discussion it is useful to look at a simple conceptual model for
a metal, the Drude model, in which the relative permittivity is
given by

εm(ω) = 1 − ω2
p

ω2 − i�ω
(2)

where ωp is the plasma frequency and � the scattering rate
that is used to account for dissipation (through scattering)
of the electron motion. Substituting this expression for εm

into the dispersion relation (equation (1)), and by making the
assumption for the moment that only the real part of εm is
important, we can plot the SPP dispersion relation, figure 2,
where we have taken ωp and � for silver to be ωp = 1.2 ×
1016 rad s−1 (≡7.9 eV) and � = 1.45 × 1013 s−1 (≡0.06 eV)

respectively. This choice of ωp and � gives a reasonable match
to the experimentally determined relative permittivity of silver
in the visible part of the spectrum [5].

The dispersion curve, figure 2, shows that at low
frequencies the surface mode lies close to the light line and
is predominantly light-like; it is in this region that it is best
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Figure 2. The dispersion relation, found by taking the real part of
equation (1) with the relative permittivity of the metal based on the
Drude approximation, equation (2), with ωp and � for silver taken to
be ωp = 1.2 × 1016 rad s−1 (≡7.9 eV) and � = 1.45 × 1013 s−1

(≡0.06 eV) respectively. The data are plotted in terms of the plasma
frequency, and the light line is simply the dispersion line for light in
free space.

described as a polariton. As the frequency rises the mode
moves further away from the light line, gradually approaching
an asymptotic limit, the surface plasmon resonant frequency.
This occurs when the relative permittivity of the metal and
dielectric are of the same magnitude but opposite sign, thus
producing a pole in the dispersion relation, equation (1).
Note that for the case considered here, the visible and near-
IR regime, the SPP is in general close to the light line [6],
implying that the wavelength associated with the SPP is in
this regime only slightly shorter than that of light of the same
frequency.

The oscillating nature of the SPP mode surface charge
density and associated fields is shown schematically in figure 3.
From this figure we can see three of the length scales that
are important to SPPs. Perhaps the most obvious length scale
is the wavelength or period of the SPP, λSPP, the separation
of positions of equal charge/field on the surface. There are
two other important length scales here: the penetration depths
of the fields into the dielectric and the metal, δd and δm

respectively. The remaining length scale we wish to discuss
is the SPP propagation length, δSPP, the distance the surface
plasmon–polariton travels before its intensity is diminished by
1/e. These four length scales are the focus of most of what
follows; before looking at them in detail we first take another
look at the dispersion relation since information about all four
length scales can be obtained from it [4].

From the dispersion relation (equation (1)) we can see
that as a result of the complex nature of εm, kSPP is also a
complex quantity. Writing the complex relative permittivity
of the metal as εm = ε′

m + iε′′
m, we can write the complex

surface plasmon–polariton wavevector as kSPP = k ′
SPP + ik ′′

SPP.
For the case considered here, two semi-infinite media separated
by a planar interface, this complex wavevector arises from the
absorbing nature of the metal; SPPs attenuate as they propagate
and have a finite lifetime [7]. Where the coupling of the SPP
to radiation (freely propagating light) is possible, for example
because of the presence of a grating on the surface or proximity

+++ - - - - +++
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Figure 3. Sketches of the surface charge and electric field
distributions associated with the surface plasmon–polariton mode.
The right-hand section indicates how the z-component of the electric
field strength falls with distance away from the interface. Three of
the length scales are indicated: the SPP wavelength, λSPP, and the
penetration depth of the field into the dielectric, δd, and into the
metal, δm.

(This figure is in colour only in the electronic version)

of a high index layer to the metal dielectric interface, then this
radiative loss also contributes to the complex nature of the SPP
wavevector [8]. As we will see, all of the four length scales
we are interested in can be obtained from the (complex) SPP
dispersion relation.

If for the moment we ignore the complex nature of this
expression, we can see that the magnitude of the surface
plasmon–polariton wavevector (momentum), kSPP, is always
more than that of a photon in the dielectric medium bounding
the metal,

√
εdk0. and this represents the non-radiative or

bound nature of the SPP mode. The fact that kSPP >√
εdk0 also means that one cannot use incident plane-wave

light to couple to these modes—some form of momentum-
enhancing scheme is needed. There are various coupling
schemes that allow light and SPP modes to be coupled, notably
prism coupling [8, 9], grating coupling [10–12] and near-field
coupling [13, 14].

3. Surface plasmon–polariton length scales

We next look at the four length scales in turn, looking at
their magnitude and the important consequences these have in
thinking about using SPPs in the context of sub-wavelength
optics.

3.1. The surface plasmon–polariton wavelength

We begin by looking at the wavelength of the surface
plasmon–polariton, i.e. the period of the surface charge density
oscillation and associated field distribution of the mode. The
SPP wavelength and the SPP propagation distance can be
found from the complex dispersion relation by taking the real
and imaginary parts respectively. The real part of the surface
plasmon wavevector is

k ′
SPP = k0

√
εdε′

m

εd + ε′
m

. (3)

From this the SPP wavelength, λSPP, given by λSPP = 2π/k ′
SPP,

is

λSPP = λ0

√
εd + ε′

m

εdε′
m

. (4)
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Figure 4. Showing how the normalized surface plasmon–polariton
wavelength (i.e. SPP wavelength relative to free space wavelength
λSPP/λ0) varies with free space wavelength in the visible and
near-infrared. The data were computed using the Drude
approximation for the relative permittivity of the metal (with ωp and
� for silver taken to be ωp = 1.2 × 1016 rad s−1 (≡7.9 eV) and
� = 1.45 × 1013 s−1 (≡0.06 eV) respectively). The relative
permittivity of the dielectric was taken to be equal to 1. Note that in
this spectral range the SPP wavelength is only slightly less than the
free space wavelength.

And the normalized SPP wavelength, λSPP/λ0, is given by

λSPP

λ0
=

√
εd + ε′

m

εdε′
m

. (5)

Figure 4 shows the SPP wavelength as a function of the free
space wavelength, λ0, for SPPs on a silver surface; the relative
permittivity of silver is based on the Drude parameters given
above, and the relative permittivity of the dielectric has been
taken as equal to 1.

We can see from figure 4 that the SPP wavelength, λSPP,
is very similar to, but always slightly less than, the free space
wavelength, λ0. Again, the fact that λSPP < λ0 reflects the
bound nature of SPP modes on a planar surface. The important
point to draw from these data is that if we are to use surface
structure as a means to control SPPs, e.g. through the use of
periodic structures that act as Bragg scatterers, then the length
scale of such structure needs to be of order the wavelength
involved. (Where the overlying dielectric is not air/vacuum
but some other medium, for example water, then the SPP
wavelength will be reduced in proportion to the refractive
index.) In practice, for SPP modes in the visible and near-IR,
one therefore needs structures with features of order ∼400–
1000 nm size, something that is readily achieved with electron-
beam lithography [15], focussed ion-beam milling [16], and
photolithography [17], and should in principle be possible with
structures produced by soft-lithography, e.g. solvent-assisted
soft lithography [18]. Using such approaches a whole range of
possibilities are opened up (beam splitters, mirrors, etc), both
for manipulating SPP modes on the surface, and for coupling
them to freely propagating light [19, 20].

In order that such wavelength-scale structure be effective
in manipulating SPPs it is important that the SPPs have a
propagation (attenuation) length that is at least several times
their wavelength. Put another way, the SPP needs to experience
several bumps of a grating for grating coupling to be effective.
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Figure 5. Showing the propagation length of the surface
plasmon–polariton. The date were computed using the Drude
approximation for the relative permittivity for the metal (with ωp and
� for silver taken to be ωp = 1.2 × 1016 rad s−1 (≡7.9 eV) and
� = 1.45 × 1013 s−1 (≡0.06 eV) respectively). The relative
permittivity of the dielectric was taken to be equal to 1. Note that in
calculating these data we have assumed that there is no radiative
damping, specifically that there is no mechanism by which SPPs can
be converted to light, e.g. by the presence of a prism or grating
coupler.

3.2. The surface plasmon–polariton propagation length

As noted above, the SPP propagation length, δSPP, is found
from the imaginary part of the surface plasmon–polariton
wavevector. This is obtained from equation (1) as

k ′′
SPP = k0

ε′′
m

2(ε′
m)2

(
ε′

mεd

ε′
m + εd

) 3
2

. (6)

From this the propagation length, δSPP, the distance over which
the power/intensity of the mode falls to 1/e of its initial value,
is given by δSPP = 1/2k ′′

SPP, and is found to be

δSPP = λ0
(ε′

m)2

2πε′′
m

(
ε′

m + εd

ε′
mεd

) 3
2

. (7)

When the metal is low loss, and the condition |ε′
m| � |εd| is

satisfied, we can approximate the propagation length as

δSPP ≈ λ0
(ε′

m)2

2πε′′
m

. (8)

From equation (8) we see that for a long propagation length we
require a large (negative) real part of the relative permittivity
of the metal, ε′

m, and a small imaginary part, ε′′
m. i.e. we need a

low loss metal, as one would expect.
The propagation length calculated using equation (8) and

based on the Drude parameters for silver is shown in figure 5
for visible and near-IR wavelengths. Several implications
can be drawn from these data. First, if one is thinking of
trying to construct photonic components or circuits based on
SPPs then the propagation length represents an upper limit
on the size of the structures one can contemplate using. The
data in figure 5 show that the absorptive nature of metals
in the visible and near-IR places considerable restrictions on
potential circuit size. One way to extend the length scale of
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SPP modes is to make use of the coupled surface plasmon–
polariton modes supported by symmetrically clad thin metal
films [21]. When the metal is thin enough then the SPP modes
associated with the two metal surfaces may interact to form
two coupled SPP modes. We will see how thin the metal
needs to be below, but note for now that the film thickness
needs to be of order 50 nm to see significant coupling. One
of these modes propagates in such a way that less of the
power is carried in the metal than is the case for the single
interface SPP mode, thus reducing the effects of loss. Coupled
modes have been investigated in some detail [22, 23] and the
longest propagation lengths reported thus far are of the order of
centimetres. There is a price to pay for such long propagation
lengths: one loses the sub-wavelength character of the SPP
mode because these coupled modes have fields that extend
further into the dielectric; however, this does facilitate a better
match to the spot size of optical fibres.

Second, we see that the SPP propagation length is
significantly greater than the SPP wavelength. The fact that
δSPP � λSPP means that, as anticipated above, wavelength-
scale gratings and other periodic surface structures can be used
to manipulate surface plasmon–polaritons since the modes
are able to interact over many periods of such a structure.
Note though that, as mentioned above, in the case where
such structure can scatter SPP modes into freely propagating
light, e.g. a grating coupler, radiative damping acts as an
additional loss mechanism that reduces the SPP propagation
length. However, optimum coupling is achieved when radiative
and non-radiative (internal) losses are equal [24], so that the
SPP propagation length is only reduced by a factor of ∼2, and
is in general still more than adequate to ensure that the mode
experiences enough of a periodic structure to undergo coherent
scattering.

3.3. The surface plasmon–polariton field penetration depths

The penetration of the fields into the materials bounding the
interface, the metal and the dielectric, can be found by again
considering the wavevector of the SPP. In a material with a
relative permittivity εi the total wavevector of light of free-
space wavevector k0 is given by εi k2

0. Setting the z-direction
to be the direction perpendicular to the plane in which the SPP
propagates, the relationship between the total wavevector and
this z-component of the wavevector is

εi k
2
0 = k2

SPP + k2
z.i . (9)

The surface plasmon–polariton wavevector is simply the in-
plane component of the wavevector. As we noted above, the
surface plasmon–polariton wavevector always exceeds that of
a photon freely propagating in the adjacent medium, i.e. k2

SPP >

εi k2
0, so that the z-component of the wavevector in both

media is imaginary, representing the exponential fall off of
the fields with distance into the two media. Combining the
dispersion relation (equation (1) with (9)) above we find for
the penetration depths into the dielectric, δd, and metal, δm, are

δd = 1

k0

∣∣∣∣ε
′
m + εd

ε2
d

∣∣∣∣
1
2

(10)

δm = 1

k0

∣∣∣∣ε
′
m + εd

ε′2
m

∣∣∣∣
1
2

(11)
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Figure 6. Showing how the penetration depth into the dielectric
(here air) varies with free space wavelength in the visible and
near-infrared. The data were computed using the Drude
approximation for the relative permittivity of the metal (with ωp and
� for silver taken to be ωp = 1.2 × 1016 rad s−1 (≡7.9 eV) and
� = 1.45 × 1013 s−1 (≡0.06 eV) respectively). The relative
permittivity of the dielectric was taken to be equal to 1.

where we have again assumed that |ε′
m| � |ε′′

m|. Let us now
look at these two penetration depths in turn.

3.3.1. The surface plasmon–polariton penetration depth
into the dielectric. Using equation (10) we can plot the
penetration depth into the dielectric medium as a function of
wavelength, as shown in figure 6. We see from figure 6 that for
wavelengths in the visible spectral region the penetration depth
into the dielectric is less than the free space wavelength whilst
at the infrared end it is more than the free space wavelength.
This increase, relative to the free space wavelength, arises
because as one moves to longer wavelengths the metal is a
better conductor and the mode has a wavevector that is closer
to the free space wavevector (the mode is thus more light-like)
and is consequently less confined to the surface. Nonetheless,
to a first approximation the penetration depth into the dielectric
is the same as the free space wavelength. The penetration
depth of the field into the dielectric gives us a measure of
the length scale over which the SPP mode is sensitive to
the presence of changes in refractive index, for example the
presence of a prism coupler in the Otto configuration for
coupling light to SPPs via attenuated total reflection [9], or
the binding of specific bio-molecules in a bio-sensor. In the
latter case we see that although the sensitivity of the SPP
to changes in the dielectric medium falls of exponentially,
the distance over which the fall off takes place is large on
a molecular scale. Although we are discussing here the
SPP modes associated with continuous planar metal surfaces,
albeit perhaps possessing wavelength-scale patterning, it is
interesting to note that the penetration depth into the dielectric
of the localized surface plasmon mode associated with metallic
nanoparticles can be very considerably smaller, of order
10 nm [25], owing to the divergence of the electric field around
the tips of such structures.

Finally we note that associated with the localization of the
field near the metal there is also a field enhancement, owing to
the associated increase in the local photonic mode density [14].
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Figure 7. Showing how the penetration depth into the metal varies
with free space wavelength in the visible and near-infrared. The data
were computed using the Drude approximation for the relative
permittivity of the metal (with ωp and � for silver taken to be
ωp = 1.2 × 1016 rad s−1 (≡7.9 eV) and
� = 1.45 × 1013 s−1 (≡0.06 eV) respectively). The relative
permittivity of the dielectric was taken to be equal to 1.

This enhanced field has many important consequences: it is
part of the reason that SPPs are sensitive to changes at the
surface (in addition to only being sensitive to changes relatively
near the surface, as noted above). Further, it also means that
fluorescing molecules near a metal surface may predominantly
lose their energy to SPP modes; under good conditions such
molecules have a 95% probability of losing their energy to an
SPP mode [26]. This has important consequences for light
sources such as light-emitting diodes where the presence of
metallic electrical contacts in a thin-film device can lead to
SPPs being an important mechanism that traps light in the
device, reducing efficiency, which is something that it is hoped
nanostructuring may help us overcome [6, 27, 28].

3.3.2. The surface plasmon–polariton penetration depth into
the metal. We come now to the last of our fourth length
scales, and in many ways the most interesting, the penetration
of the field into the metal, δm. In figure 7 we have plotted
this parameter as a function of wavelength for silver, using the
Drude parameter listed above. A striking feature of these data
is that the penetration depth is largely independent of the free
space wavelength in this wavelength range, taking a value of
∼30 nm. This should not perhaps be a surprise: substituting
the Drude expression for the relative permittivity of the metal
(equation (2)) into the expression for the penetration depth into
the metal (equation (11)) and noting that we are working in the
regime well below the plasma frequency, i.e. ω � ωp, then one
finds the penetration depth to be

δm = λp

2π
(12)

where λp is the wavelength associated with the plasma
frequency. For ωp = 1.2×1016 rad s−1 this gives δm = 25 nm.
This expression is identical with the usual expression obtained
for the skin depth [29]. (Note that in figure 7 the penetration
depth rises above this value for short wavelengths because here
the assumption that ω � ωp begins to fail.)

The penetration depth into the metal gives us a measure
of the thickness required of metal films that allow coupling to
freely propagating light in the prism coupling (Kretschmann)
geometry (typically 50 nm for silver and gold in the visible),
the thickness of films in SPP-mediated transmission through
metals [30, 31] and using metal films for lensing [32, 33], and
of the thickness of metal films where the SPP modes on the two
metal surfaces interact [23].

The penetration depth into the metal also gives us at
least an idea of the feature sizes needed to control SPPs: as
features become much smaller than the penetration depth into
the metal they will have a diminishing effect on SPP mode.
Thus the small-scale (nm) roughness associated with many
of the techniques used to make the metal films used in SPP
investigations is usually only sufficient to provide a minor
perturbation to the SPP mode.

Does the penetration depth into the metal, 25 nm,
represent the shortest length scale of importance to SPPs?
The answer is no. There are two related factors to consider:
the effect of spatial dispersion and impedance changes at
boundaries. In all that we have discussed so far we have
assumed that the metal can be described by a relative
permittivity that applies to bulk metals or continuous thin
films. However, at very short lengths scales, for example
when a molecule is adjacent to a metallic surface, such a
description no longer holds and one has instead to include a
non-local (spatially dispersive) response [13]. Such a response
is of relevance for length scales below a few nanometres and
defines the lower end of the length scale of interest for surface
plasmon–polaritons. The penetration depth into the metal
could act as some kind of limiting scale for sub-wavelength
structures. Although spatial dispersion means we need to find
better ways to describe the optical response of metals on a very
short lengths scales, it also has a bearing on how we think
about the penetration depth into the metal. If we consider
how the field penetrates from the dielectric into the metal, the
strength depends not just on the penetration depth but also on
the extent of the impedance mismatch at the metal/dielectric
interface. This second factor can lead to the field in the metal
being very much weaker than in the dielectric over a length
scale much less than the penetration depth, something that
has very recently been elegantly demonstrated by Hibbins and
co-workers [34] in the microwave regime. Whilst it is the
impedance mismatch that determines the immediate reduction
in the strength of the electric field in the metal, the non-
local response determines the length scale over which this
impedance mismatch occurs: the boundary between the metal
and dielectric is not infinitely sharp.

The final consequence we wish to mention here is that
it is the combination of impedance mismatch and penetration
depth of the field into the metal limits the extent of the
field enhancement that can be achieved. The largest field
enhancements are found between metal surfaces [35, 36].
However, the degree to which the field is enhanced by such
confinement is ultimately limited by the impedance mismatch
and the penetration depth into the metal.

4. Outlook: the challenges

The length scales associated with SPPs are summarized in
figure 1. At the longest scale, the pioneering work by Berini
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and co-workers [22, 23] has shown that circuit elements such as
couplers and junctions are possible, and that losses can be kept
low enough to allow propagation over many centimetres. More
complex components such as interferometers and modulators
need to be better explored if the idea of SPP-based photonic
circuits is to be properly assessed.

SPPs are also being pursued as a means to develop
sub-wavelength optical components. In this area we need
to make use of significantly sub-wavelength sized metallic
objects, e.g. particles or holes, possibly in conjunction with
larger structures to allow more efficient coupling to freely
propagating light.

One of the more topical areas in the plasmonics
community is that of sub-wavelength optics. The work of
Hibbins et al [34], among others, shows that in the microwave
regime λ/1000 is possible. There is a fascinating topic of
study emerging as designs that work at microwave frequencies
are explored at optical frequencies: what can and cannot be
achieved are not immediately obvious owing to the different
properties of metals in these different spectral regions. We are
already seeing a surge of activity in pursuing sub-wavelength
plasmonics, and it will be fascinating to see how this develops
over the next few years.

Another area of active investigation is that of field en-
hancement in phenomena such as surface-enhanced fluores-
cence and SPP-mediated energy transfer [37–39]. As we have
seen above, the wavelength and propagation length of SPP
modes are such that we can exert good control over them; in
particular we may efficiently couple them to freely propagat-
ing light. Thus, when we combine this fact with the high effi-
ciency with which excited molecules may lose their energy to
SPP modes we see that SPPs offer an attractive route to control
the optical properties of molecules; we thus expect SPPs to be
important in the development of molecular photonics.

Finally, we might perhaps note that whilst the length
scale for features we wish to control SPPs with are identified
as being roughly that of the associated wavelength of light
there is at least one important exception, and that is when we
are working near the asymptotic surface plasmon frequency;
see figure 2. Here the wavevector of the mode is very
significantly enhanced over the free space wavevector and the
mode consequently has a much reduced wavelength. As has
been pointed out by others, the density of states associated
with such modes is high (the density of states varies as the
inverse of the slope of the dispersion curve). This has important
consequences for light-emitting structures where the emission
is mediated by surface plasmons [6, 27, 40].

In conclusion, we have seen that length scales from
nanometres to centimetres are important for surface plasmon–
polaritons in the visible and near-infrared. Exciting times lie
ahead as we learn more about how to harness surface plasmon–
polaritons with nanoscale structure.
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