MODULE TITLE

Quantum Optics and Photonics

 

CREDIT VALUE

15

MODULE CODE

PHYM015

MODULE CONVENER

Dr O. Kyriienko

 

 

DURATION

TERM

1

2

3

Number Students Taking Module (anticipated)

33

WEEKS

T2:01-11

 

DESCRIPTION – summary of the module content (100 words)

This module explores how light may be controlled and guided at the level of few photons. It describes how quantum physics may be harnessed in the future to offer new and exciting opportunities in manipulating light, including quantum computing and communication. This module will range over basic physics, mathematical formulation of quantum theory, and topical applications.

MODULE AIMS – intentions of the module

This module aims to develop a detailed understanding of the physics that underpins quantum optics and photonics, and learn the underlying mathematical language. It will explores solutions to problems from topics at the forefront of current optics research, such as the production and manipulation of light in non-classical states.

INTENDED LEARNING OUTCOMES (ILOs) (see assessment section below for how ILOs will be assessed)

 On successful completion of this module you should be able to:

Module Specific Skills and Knowledge:

  1. describe the fundamental properties of liqht;
  2. describe how sources produce light in special (e.g. coherent and single-photon) states;
  3. explain the operation and applications of a range of photonic devices and systems;
  4. solve problems involving the interaction of light with matter by applying quantum electrodynamics (QED);
  5. explain nonlinear optical response and calculate some of its classical and quantum effects;
  6. explain quantum teleportation and describe its significance for communicating information about quantum states.

Discipline Specific Skills and Knowledge:

  1. solve mathematical problems;
  2. apply electrodynamics and quantum mechanics to devices, structures and systems.

Personal and Key Transferable / Employment Skills and Knowledge:

  1. develop self-study skills;
  2. solve problems.

SYLLABUS PLAN – summary of the structure and academic content of the module

  1. Quantum Mechanics
    Dirac notation. Quantum evolution. Schrödinger, Heisenberg and interaction pictures. Composite systems and entanglement.
  2. Quantisation of the Electromagnetic Field
    Maxwell's equations, electromagnetic waves and their relation to harmonic oscillators. Quantum electromagnetic waves. Fock states. Electromagnetic zero-point energy.
  3. Single-Mode Quantum Light
    Field and quadrature operators. Optical microcavities and experimental setups.
  4. Single-Mode Number States
    Uncertainty relations. Signal-to-noise ratio.
  5. Single-Mode Coherent States and Their Relation to Classical Light
    Photon number distribution and non-classical light detection. Electric field uncertainty. Displacement operator.
  6. Thermal Radiation and Fluctuations in Photon Number
    Planck distribution. Statistical classification of optical states.
  7. Single-Photon Interference
    Beam splitters. The Mach-Zehnder interferometer.
  8. Two-Photon Interference and the Hong-Ou-Mandel Effect
  9. Light-Atom Interactions
    Electric-dipole approximation. Perturbation theory. Absorption, stimulated and spontaneous emission. Theory of lasing.
  10. Cavity Quantum Electrodynamics
    Rabi model. Jaynes-Cummings model. Dicke model. Master equation.
  11. Coherence Functions
    First-order coherence. Second-order coherence. Anti-bunching and single photon emission: theory and experiments.
  12. Nonlinear Optics and Non-Classical Light
    Non-linear polarization. Parametric down-conversion. Squeezed states of light. Kerr-type nonlinearity.
  13. Quantum Teleportation
    The no-cloning theorem. Entangled photon pairs and Einstein-Podolsky-Rosen states. Quantum communication protocols. Teleportation.
  14. Introduction to Quantum Computing
    Qubits and quantum platforms. Quantum gates. Superdense coding. Quantum algorithms for computation. Phase kick-back and Deutsch-Jozsa algorithm.

 

LEARNING AND TEACHING

 

LEARNING ACTIVITIES AND TEACHING METHODS (given in hours of study time)

Scheduled Learning & Teaching activities  

22 hours

Guided independent study  

128 hours

Placement/study abroad

0 hours

 

DETAILS OF LEARNING ACTIVITIES AND TEACHING METHODS

 Category 

 Hours of study time 

 Description 

Scheduled Learning & Teaching activities

20 hours

20×1-hour lectures

Scheduled Learning & Teaching activities

2 hours

2×1-hour problems/revision classes

Guided independent study

30 hours

5×6-hour self-study packages

Guided independent study

16 hours

4×4-hour problem sets

Guided independent study

82 hours

Reading, private study and revision

 

ASSESSMENT

 

 FORMATIVE ASSESSMENT - for feedback and development purposes; does not count towards module grade

Form of Assessment

Size of the assessment e.g. duration/length

ILOs assessed

Feedback method

Guided self-study

5×6-hour packages

1-8

Discussion in class

4 × Problems sets

4 hours per set

1-8

Solutions discussed in problems classes.

SUMMATIVE ASSESSMENT (% of credit)

Coursework

0%

Written exams

100%

Practical exams

0%

 

DETAILS OF SUMMATIVE ASSESSMENT

Form of Assessment

 

% of credit

Size of the assessment e.g. duration/length

 ILOs assessed 

Feedback method

Final Examination

100%

2 hours 30 minutes

1-8

Mark via MyExeter, collective feedback via ELE and solutions.

 DETAILS OF RE-ASSESSMENT (where required by referral or deferral)

Original form of assessment

 Form of re-assessment 

ILOs re-assessed

Time scale for re-assessment

Whole module

Written examination (100%)

1-8

August/September assessment period

RE-ASSESSMENT NOTES  

See Physics Assessment Conventions.

 

RESOURCES

 

 INDICATIVE LEARNING RESOURCES -  The following list is offered as an indication of the type & level of information that you are expected to consult. Further guidance will be provided by the Module Convener.

Core text:

  • Not applicable

Supplementary texts:

ELE:

CREDIT VALUE

15

ECTS VALUE

7.5

PRE-REQUISITE MODULES

Waves and Optics (PHY1023), Quantum Mechanics I (PHY2022) and Electromagnetism II (PHY3051)

CO-REQUISITE MODULES

none

NQF LEVEL (FHEQ)

7

AVAILABLE AS DISTANCE LEARNING

NO

ORIGIN DATE

01-Oct-10

LAST REVISION DATE

08-Aug-20

KEY WORDS SEARCH

physics; quantum optics; photonics; optics; Maxwell's equations; electodynamics; quantum mechanics.

Module Descriptor Template Revised October 2011