RMS Voltage

Dr. Pete Vukusic, Exeter University:
PHY 1106: Waves and Oscillators (Lecture 11)
For a driving voltage of the form or a current of the form

The expression for the RMS (root mean square) value is;
\square \square

RMS tells us the average of V^{2} (or I^{2}) over a full cycle.
The mains voltage is usually quoted as
But V_{0} is higher, and is \qquad

Resonance in AC circuits.

Current amplitude

The current is

Practice Question.

Write down the expression for the impedance of a system comprising a resistor in series with a capacitor and inductor.

If $\mathrm{R}=1.5 \mathrm{k} \Omega$, $\mathrm{L}=6 \mathrm{H}$ and $\mathrm{C}=5 \mu \mathrm{~F}$, determine the value of the modulus of the impedance when driven at 50 Hz .

What is the phase angle between the current and voltage?
Answer.

Modulus of Z;

Dr. Pete Vukusic, Exeter University. 11)
 Phase angle ϕ

Questions

1. In AC theory, describe what is meant by the statement "the voltage across an inductor leads the current by 90 degrees"?
2. With this in mind, go on to describe the phase differences between the voltages across the resistive, inductive and capacitive components within a series LCR circuit.
3. Show that the magnitude of the impedance is $|Z|=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$
4. Write an expression for the phase angle between the driving voltage and current in the circuit.
5. If a 2 mF capacitor is used in conjunction with a 20Ω resistor, show that a 5 mH indictor will cause the system to resonate at a driving frequency of approx.. 50 Hz .
6. With the 5 mH inductor in place, calculate the resulting current amplitude I_{0} for a driving voltage of the form $\mathrm{V}=100 \cos 50 \mathrm{t}$
7. Write down the expression for the average power transferred.
8. Calculate P_{av} at 50 Hz for the component values given.

Answer 1. The statement describes the phase between V and I.

The $\mathrm{I}-\mathrm{V}$ relation is :

The "j" term represents a 90 degree phase relation between the voltage and current phasors. (Sketch diagram).

Answer 2. Describe other two I-V relations.
Highlight presence/absence of j-operator.
Sketch full phasor diagram.

Answer 3. Write / derive impedances of components.
Impedances in series "add".
Simplify expression.
Obtain magnitude.

Answer 4. Back to expression for Z.
Real and imag. components on Argand diagram.
Trig. produces phase angle expression.

9

Answer 5. System resonates when current is maximum value. (i.e. $\mathrm{I}=\mathrm{V} / \mathrm{Z}$)
This occurs at minimum Z.
Z is a minimum when inductive and capacitive reactances cancel.
i.e. This occurs when

Then use $\omega=2 \pi f \ldots$ for $f=$ \qquad Hz.

Answer 6. If $\mathrm{V}=100 \cos 50 \mathrm{t}$; this means $\mathrm{V}_{0}=100$ and $\omega=50$.
Use $\mathrm{I}_{0}=\mathrm{V}_{0}|\mathrm{Z}|$.
But at 50 Hz , the system is approx. at resonance,
therefore $|\mathrm{Z}|=\mathrm{R}$
and

Answer 7.

Answer 8.

Again using $|\mathrm{Z}|=\mathrm{R}$ at 50 Hz , because the system is at resonance,
Also at resonance,

Therefore $P_{a v}$ simplifies to

