PHY 1106: Waves and Oscillations

11 Lectures; Dr. P. Vukusic (Syllabus Section I-III)

11 Lectures; Dr. A. Usher

(Syllabus Section IV-VIII)

university EXETER

Module Texts:

Young H.D. and Freedman R.A. University Physics (Addison-Wesley)

Supplementary Reading:

Pain H.J.,
The Physics of Vibrations and Waves (Wiley)

I. The Physics of SHM.

Simple Harmonic Motion - motion which is periodic, repeating, oscillatory ...etc. (...loose definition.)
[rigorous definition to follow after first analysis]

There will be three analyses for periodic motion.
i) SHM with no damping (frictionless system).
ii) SHM with damping (friction in the system).
iii) Forced oscillation. (system is driven by an external force)

3

1.1 Simple (undamped) harmonic motion.

In 1D, a particle displaced from an equilibrium position, eg. a spring

SHM analysis (undamped)

We do this by and setting up the equation of motion.

1) \square Any net force on an object of mass \mathbf{m} will produce an \qquad a
2) \square The \qquad F of the system, causes the object of mass \mathbf{m} to accelerate Combining 1)and 2);

And re-writing;
rearranging; \square

This provides a definition for SHM;

- The of an object in SHM is proportional to its from equilibrium,
- and is in the opposite direction to the \qquad

where f is frequency, and c is a constant

For periodic motion, however, remember the following relations;

NB: $\quad \mathrm{T}$ is time for one cycle of motion (in seconds)
f is frequency of oscillation (in Hertz)
ω is the angular frequency (rads per second)

Solution to the equation of SHM.

We solve the equation that predicts the variation of displacement \mathbf{x} with time \mathbf{t}, using the following; $\quad \mathrm{x}=\mathrm{A} \cos \omega \mathrm{t}$

Differentiate once to get velocity
2)

Differentiate a second time to get acceleration.
by substitution of 1) into 3);
4)

From the previous pages, however, we have three relations involving $\omega, \mathbf{f}, \mathbf{k}$ and \mathbf{m}.

$$
\begin{aligned}
& \ddot{x}=-\frac{k}{m} x \\
& \omega=2 \pi f
\end{aligned}
$$

Tie these equations together with equation 4) and we get a solution for the \qquad

This is the resonant frequency of the spring / mass system; i.e. when it is set oscillating, it will automatically oscillate with this frequency f.

Note;

- It only depends on
- It does not depend on the of the oscillation.

The natural frequency of a simple pendulum;

The natural frequency of a torsional pendulum;

Question.

A spring with mass 400 g , is stretched by 75 cm . If it is then set oscillating, at what frequency does it resonate?

Answer.

First find the spring constant using Hooke's Law.
\square
Then use the frequency equation for SHM,

