Comments on Longitudinal waves in a bar

Longitudinal waves in a solid bar are analogous to waves on a string:

Sound waves in a solid	Transverse waves on a string
In both cases the phase velocity:	
- is larger in a medium .	
- is smaller in a medium	

is smaller in a medium

Characteristic impedance

Remember that z is of the form;
$z=\frac{\text { driving force }}{\text { appropriate particle/medium velocity }}$

For a bar of unit cross-sectional area,

So, for a harmonic wave of the form, $\xi=\xi_{0} \exp [i(\omega t-k x)]$ \rightarrow differentiate and substitute for the impedance z;

Derivation is similar to waves in a solid bar. Waves are again longitudinal.

- Same diagram:
- shows portion of the gas having cross section A

cross section, A
Dr. Pete Vukusic, Exeter University:
PHY 1106: Waves and Oscillators (Lecture 22)
- This time the displacement ξ at x_{0} causes a change in pressure $d P$

The measure of a gas's resistance to being compressed is called its;

Sound waves in a gas (2)

The changes of pressure in the gas are too fast for the system to exchange energy with its surroundings, so the changes are adiabatic:
differentiate wrt V :
substitute def'n of B:

- As with the solid bar, we calculate the resultant force on the element, which this time we get from the difference in pressure:

$$
P_{x_{0}}-P_{x_{0}+d x}=\left[P_{x_{0}}-\left(P_{x_{0}}+\frac{\partial P}{\partial x} d x\right)\right]
$$

- Again use Newton's $2^{\text {nd }}$ law for the element of gas :
remember: pressure = force acting on unit area

To get to a wave equation we need to find a relation between P and ξ. We do this through the definition of the bulk modulus.

First we note that; $V=A . d x$ and $d V=A . d \xi \Rightarrow d P=-B \frac{d \xi}{d x}$

- Next, write the total pressure as being ambient pressure + change in pressure due to the wave:

$$
P=P_{0}+d P
$$

- But since only $d P$ changes as the wave passes through the medium, then

Sound waves in a gas (5) $\frac{\partial P}{\partial x}=-B \frac{d^{2} \xi}{d x^{2}}$

$$
-\frac{\partial P}{\partial x} d x=\rho d x \frac{\partial^{2} \xi}{\partial^{2}}
$$

- By substitution into our previous expression, and simplifying:

$$
\frac{\partial P}{\partial x}=-B \frac{d^{2} \xi}{d x^{2}} \quad-\frac{\partial P}{\partial x} d x=\rho d x \frac{\partial^{2} \xi}{\partial t^{2}}
$$ phase velocity;

7

- which yields the dispersionless wave equation with
 sispersionless wave equation with

 phase velocit
Sound waves in a gas (6)

The pressure through the gas acts as a type of wave:

- Using the harmonic solution to the wave equation for ξ :

$$
\xi=\xi_{0} \exp [i(\omega t-k x)]
$$

- So, remembering that;

$$
d P=-B \frac{d \xi}{d x}
$$

then;
i.e. \rightarrow the excess pressure $d P$ is itself a wave, which

Acoustic impedance

