PHY1106: Waves and Oscillators Dr. Pete Vukusic

Lecture 19.

Lecture objectives.

- To derive expressions for transmitted and reflected power at a junction between two media of different impedance z.
- To consider energy conservation in the special cases discussed in lecture 18.
- To understand the concept of impedance matching at an interface in significant detail.
- To derive and manipulate reflection and transmission coefficients (in terms of z), for the case of a quarter-wave transformer (impedance matching case), so that zero reflection is produced.

Post-lecture tasks.

- The wave equation for the electric field component of the electromagnetic wave in dielectrics is

$$
\frac{\partial^{2} E_{x}}{\partial z^{2}} \frac{1}{\varepsilon \mu}=\frac{\partial^{2} E_{x}}{\partial^{2}}
$$

(careful how you interpret this equation!)
where the permeability and permittivity are μ and ε respectively.

- Write down a wave function E_{x} which satisfies this equation and specify the direction of the wave propagation.
- Express the phase velocity ν of this wave in terms of μ and ε and calculate the refractive index $n=c / v$ for a dielectric with $\mu=\mu_{0}$ and $\varepsilon=10 \varepsilon_{0}$.
- The characteristic impedance of dielectrics to electromagnetic waves is

$$
Z=(\mu / \varepsilon)^{1 / 2}
$$

The reflection coefficient for incident light passing from a medium with impedance Z_{1} to a medium with impedance Z_{2} is

$$
R=\frac{Z_{1}-Z_{2}}{Z_{1}+Z_{2}}
$$

- For the dielectric with μ and ε given above, calculate the transmission coefficient for incident light coming from free space and having a wavelength of 400 nm .
- Calculate the thickness of the anti-reflective coating for such a dielectric.

