PHY1106:Waves and Oscillations Dr. Pete Vukusic

Lecture 10.

Lecture objectives.

- To be able to derive the complex equations for the impedance of L, C and R components.
- To understand the significance of the j operator present within the impedance terms for L and C .
- To be able to derive the expression for the complex impedance of a series LCR circuit, and to appreciate how this affects the phase between the current in the circuit and the driving voltage.
- To understand the concept of root-mean-square representation of current and voltage.

Post-lecture tasks.

1. Refer to Young (chap. 32) for derivation of rms. expressions for voltage and current.
2. Without using your notes, complete the derivation of the expression for the complex impedance of a series LCR circuit;
i.e. show that it is

$$
\mathrm{Z}=\mathrm{R}+\mathrm{j}\left(\omega \mathrm{~L}-\frac{1}{\omega \mathrm{C}}\right)
$$

2. Make sure you are familiar with the phases differences associated with each component.
3. An AC supply to a series LCR circuit has $\mathrm{V}_{0}=2$ volts and is driven at $\omega=150 \mathrm{rads} / \mathrm{s}$. Calculate the amplitude of the AC current for $\mathrm{R}=3 \Omega$, $\mathrm{L}=3 \mathrm{H}$ and $\mathrm{C}=1 \mu \mathrm{~F}$. Draw a phasor diagram showing the phase between the current phasor and the voltage phasor. (Draw the current phasor along the x -axis). To do this you have to calculate the phase difference ϕ At what (resonant) frequency would the current and voltage be in phase?
