Differentiating exponentials

The exponential function e^{x} is perhaps the easiest function to differentiate: it is the only function whose derivative is the same as the function itself.

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

$$
\frac{d}{d x}\left(e^{u}\right)=e^{x} \frac{d u}{d x}
$$

Strictly speaking, this is the correct general case

Slightly more complicated is $\mathrm{e}^{2 \mathrm{x}}$ or $\mathrm{e}^{3 \mathrm{x}}$ and so on. In these cases the number in front of the x "comes down" to the front in the derivative, (this is because we actually "bring down" the differential of this exponent)

$$
\frac{d}{d x}\left(e^{2 x}\right)=2 e^{2 x} \quad \text { and } \quad \frac{d}{d x}\left(e^{3 x}\right)=3 e^{3 x}
$$

For example, if the "exponent" is now a slightly more complicated function of x, see how we "bring down" the differential of this function; e.g. for $\exp \left(x^{2}\right)$ etc.

$$
\frac{d}{d x}\left(e^{x^{2}}\right)=2 x \cdot e^{x^{2}} \quad \text { and } \quad \frac{d}{d x}\left(e^{x^{3}}\right)=3 x^{2} \cdot e^{x^{3}}
$$

If the function is in terms of time (t) instead of x , (as with some of the functions in our lecture course, e.g. $x=\exp (\omega t)$), then the differential works in the same way;

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{e}^{\omega t}\right)=\omega \mathrm{e}^{\omega t}
$$

Or for the complex displacement of our SHM system; i.e. $x=A . \exp j(\omega t+\phi)$

$$
\dot{\mathrm{x}}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dt}}\left(A \mathrm{e}^{\mathrm{j}(\omega \mathrm{t}+\phi)}\right)=\mathrm{Aj} \mathrm{\omega} \mathrm{e}^{\mathrm{j}(\omega \mathrm{t}+\phi)}
$$

Practice Problems:

Complete the following:

$$
\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{2 \mathrm{x}^{2}}\right)=
$$

$$
\frac{d}{d x}\left(e^{x^{2}+2 x}\right)=
$$

