PHYSICS EXAMINATION PROBLEMS SOLUTIONS AND HINTS FOR STUDENT SELF-STUDY

Module Code and Lecturer	PHY1106: PV
Name of module	Waves section
Date of examination	June 2003

3(ii) Characteristic impedance is the resistance of a medium to the passage of a wave, and for mechanical waves is of the form force per unit medium displacement. *z* is proportional to $\sqrt{\rho}$.

R = -1, T = 0; End of string attached to rigid object. Hints on sketch: as $z_2 \rightarrow \infty$, $R \rightarrow -1$; when $z_2 = 0$, R = 1. Smooth curve between theses limits, with R = 0 when $z_2 = z_1$.

- 4 (a) $\omega = 2\pi f$; (b) $k = 2\pi/\lambda$; (c) $v_p = \omega/k$. 31.4 s⁻¹; 3.93 m⁻¹; 1.6 m. Sketch of displacement, hint: note this is a -ve sine function. Sketch of *P*: (hints; cos2 function oscillates twice as fast as cos, and oscillates between 0 and 1: i.e. is never negative). Mean value is $\langle P \rangle = \frac{1}{2}T\omega kA^2$.
- 5(i) See lecture notes.
 A1, positive *x* direction; A2, negative *x* direction.
 Derivation of A_{total}, and position of nodes, see lecture notes.
- (ii) Definition, see lecture notes; $v_g = d\omega/dk$. Dispersion curves: see lecture notes.