PHYSICS EXAMINATION PROBLEMS SOLUTIONS AND HINTS FOR STUDENT SELF-STUDY

Module Code and Lecturer	PHY1106: PV
Name of module	Waves and oscillations
Date of examination	June 2004

1. Differentiate expression for displacement to produce velocity.

$$
\dot{x}=\frac{F_{0}}{\left|Z_{m}\right|} e^{j(\omega t-\phi)}
$$

the real part comprises;

$$
\dot{x}=\frac{F_{0}}{\left|Z_{m}\right|} \cos (\omega t-\phi)
$$

The oscillator reaches velocity resonance when $\left|\mathrm{Z}_{\mathrm{m}}\right|$ is a minimum (i.e. when $\quad \dot{x}=\sqrt{\frac{k}{m}}$)

Vel..

Max. velocity amp. at 4.9 rads / s or at frequency 0.78 Hz .
Use standard formula to calculate $\mathrm{Q}=0.245$.
2. Lecture note definition of phasor diagram and its use in representing phases.

Write standard V-I relations for capacitor, resistor and inductor; then use these with integration or differentiation to produce standard lecture relation for the impedance of each component (including j term to represent phase etc.)

Add these impedance terms for series circuit situation to produce LCR circuit expression.
Use standard concepts and definitions to produce the given expression (hint: draw an argand diagram to represent the angle, and the phasors represented by each component).

Use expression $\quad \omega=\frac{1}{\sqrt{L C}}$ to verify resonance condition.
Then use:at $\quad I_{0}=\frac{V_{0}}{|Z|}=\frac{V_{0}}{R}=\frac{100}{20}=5 \mathrm{~A}$ resonance

Similar note-work to calculate $\mathrm{P}_{\mathrm{av}}=250 \mathrm{~W}$.
3.i. Bookwork for definitions of phase velocity, group velocity and dispersion.

Use $\quad V p=\frac{\omega}{k}$ and $\quad V p=\frac{d \omega}{d k}$ to derive expressions $\left(\mathrm{v}_{\mathrm{p}}=\mathrm{c}+\mathrm{dk}^{2}\right.$ and $\left.\mathrm{v}_{\mathrm{g}}=\mathrm{c}+3 \mathrm{dk}^{2}\right)$
ii. Amplitude unchanged; resonant freq. decreases by sq. root of 2; max KE and max PE unchanged.

Standard bookwork (from lectures) to prove solution works for SHM.
Start by calculating k (use $\mathrm{F}=\mathrm{kx}$) $=50 \mathrm{~N} / \mathrm{m}$. Then use resonant freq. equation to show $\mathrm{f}=1.13 \mathrm{~Hz}$.
4. $\quad \omega=2 \pi f=62.8 / \mathrm{s}$. Use $\mathrm{v}_{\mathrm{p}}=\omega / \mathrm{k}$ to calculate $\mathrm{k}=6.28 / \mathrm{m}$. Then $\lambda=2 \pi / \mathrm{k}$ to calculate $\lambda=1 \mathrm{~m}$.

Use lecture notes (and common maths understanding) to draw standard curves here.

Differentiate $\quad y=A \cos (\omega t-k x)$ and substitute into wave equation expression. The solution will then have

$$
v_{p}=\sqrt{\frac{T}{\rho}}
$$

5. Standard definition of stretched string impedance (in words and general equation).

Standard expression for impedance z in terms of T and ρ.
Use lecture notes or bookwork to derive the required relations for R and T .
The value of z_{3} enables complete destructive interference since the thickness is exactly a quarter wavelength (enlarge on this slightly with appropriate diagram).

