PHYSICS EXAMINATION PROBLEMS SOLUTIONS AND HINTS FOR STUDENT SELF-STUDY

Module Code and Lecturer	PHY1106: AU and PV
Name of module	Oscillations section (PV)
Date of examination	June 2003

1. Notework / lectures: Look at expression for impedance of capacitor. Freq. in denominator implies impedance is inversely proportional to freq. so as freq. increases, the impedance decreases.

Notework / lecture derivation of LCR complex impedance.

Notework / lecture details about the phases etc.

Use standard equation for phase difference ϕ : i.e. (n.b. convert f to ω)

$$\tan\phi = \frac{\omega L - \frac{1}{\omega C}}{R}$$

Answer: $\phi = 37^\circ = 0.65$ rads.

At resonance, $\omega_0 = \frac{1}{\sqrt{LC}} = 63 \text{ rads /s}$ therefore $f_0 = 10.1 \text{ Hz}$

Expression for average power: $P_{Av} = \frac{V_0^2}{27} \cos \phi$

which at resonance reduces to $P_{Av} = \frac{V_0^2}{2R}$ and gives $P_{Av} = 289 \text{ W}$

Use $Q = \frac{\omega_0 L}{R}$ which gives Q = 0.16.

2. Notework / lectures about balancing forces and the sum of individual forces etc. to give the forced damped harmonic oscillator equation.

For the picture; describe the: driving force; damping force, restoring force etc.

Notework / lectures derivation and proof as required for the complex value of A.

The phase term ϕ will be zero under conditions of resonance. This occurs when: $\omega_0 = \sqrt{\frac{k}{m}}$ i.e. when $\omega_0 = 5$ rads/s or when $f_0 = 0.8$ Hz.

Max. displ. (at resonance) = $\frac{F_0}{\omega b}$ (from given equation) = 0.25 m.

3. Clearly, amplitude remains unchanged, but a second block added: so resonant frequency $\omega_0 = \sqrt{\frac{k}{m}}$ and therefore ω_0 decreases by $\sqrt{2}$. Max KE and PE stay unchanged (since $E_{total} = \frac{1}{2} k A^2$).

Notework / lectures for this proof re. equation of motion solution.

First calculate the value of the spring constant k, using F = kx (= 50N/m).

Then use standard equation $\omega_0 = \sqrt{\frac{k}{m}}$ to give $\omega_0 = 7.1$ rads /s or f = 1.13 Hz.