PHYSICS EXAMINATION PROBLEMS SOLUTIONS AND HINTS FOR STUDENT SELF-STUDY

Module Code and Lecturer	PHY1106: AU and PV
Name of module	Oscillations section (PV)
Date of examination	June 2003

1. Notework / lectures: Look at expression for impedance of capacitor.

Freq. in denominator implies impedance is inversely proportional to freq. so as freq. increases, the impedance decreases.

Notework / lecture derivation of LCR complex impedance.
Notework / lecture details about the phases etc.
Use standard equation for phase difference ϕ : i.e. $\quad \tan \phi=\frac{\omega \mathrm{L}-1 / \omega \mathrm{C}}{\mathrm{R}}$
(n.b. convert f to ω)

Answer: $\phi=37^{\circ}=0.65$ rads.

At resonance, $\omega_{0}=1 / \sqrt{\mathrm{LC}}=63 \mathrm{rads} / \mathrm{s} \quad$ therefore $\mathrm{f}_{0}=10.1 \mathrm{~Hz}$
Expression for average power: $\quad \mathrm{P}_{\mathrm{Av}}=\frac{\mathrm{V}_{0}{ }^{2}}{2 \mathrm{Z}} \cos \phi$
which at resonance reduces to $\quad \mathrm{P}_{\mathrm{Av}}=\frac{\mathrm{V}_{0}{ }^{2}}{2 \mathrm{R}} \quad$ and gives $\mathrm{P}_{\mathrm{A}} \mathrm{V}=289 \mathrm{~W}$
Use $\quad \mathrm{Q}=\frac{\omega_{0} \mathrm{~L}}{\mathrm{R}} \quad$ which gives $\mathrm{Q}=0.16$.
2. Notework / lectures about balancing forces and the sum of individual forces etc. to give the forced damped harmonic oscillator equation.

For the picture; describe the: driving force; damping force, restoring force etc.
Notework / lectures derivation and proof as required for the complex value of A.
The phase term ϕ will be zero under conditions of resonance. This occurs when: $\quad \omega_{0}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$ i.e. when $\omega_{0}=5 \mathrm{rads} / \mathrm{s}$ or when $\mathrm{f}_{0}=0.8 \mathrm{~Hz}$.

Max. displ. (at resonance) $=\frac{\mathrm{F}_{0}}{\omega \mathrm{~b}} \quad($ from given equation $)=0.25 \mathrm{~m}$.
3. Clearly, amplitude remains unchanged, but a second block added:
so resonant frequency $\omega_{0}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$ and therefore ω_{0} decreases by $\sqrt{ } 2$.
Max KE and PE stay unchanged (since $\mathrm{E}_{\text {total }}=1 / 2 \mathrm{k} \mathrm{A}^{2}$).
Notework / lectures for this proof re. equation of motion solution.

First calculate the value of the spring constant k, using $F=k x(=50 \mathrm{~N} / \mathrm{m})$.
Then use standard equation $\omega_{0}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$ to give $\omega_{0}=7.1 \mathrm{rads} / \mathrm{s}$ or $f=1.13 \mathrm{~Hz}$.

