PHYSICS EXAMINATION PROBLEMS SOLUTIONS AND HINTS FOR STUDENT SELF-STUDY

Module Code and Lecturer	PHY1106: AU and PV
Name of module	Oscillations section (PV)
Date of examination	June 2002

1. Use the standard equation: F = -kx to give: k = 160 N/m.

Standard relation between KE and PE in an undamped system. Draw standard graph for this (notework / lectures).

For this system without damping, PE = KE when $x = \pm A/\sqrt{2}$ (use lectures derivation for this).

Show usual derivation of equation of motion from balancing of forces and describe the nature of each of the individual forces.

Calculate ω' (= 3.15 rads/s) and then use standard equation T' = $2\pi / \omega$ to give T' = 2.0 s. Then use equation for logarithmic decrement (δ) to give δ = 39.5.

Standard technique for max. value of *b* for oscillatory motion gives b = 16 kg/s.

2. Notework / lectures for complex impedances of components.

Standard derivation (from notes) of total impedance of LCR circuit.

Circuit resonates when Z is a minimum and this occurs when Z = R (i.e. giving $\omega = 1/\sqrt{(LC)}$.

Desribe significance of ϕ as the phase term and use the argand diagram (from lectures / notes) to show that; $\cos \phi = \frac{R}{1-1}$

$$\cos\phi = \frac{1}{|Z|}$$

Use equation provided for av. power to calculate av. power absorbed in all three cases:

i) for 1/8 F: $P_{av} = 7.4$ W ii) for 1/18 F: $P_{av} = 12.5$ W iii) for 1/32 F: $P_{av} = 5.3$ W

At C = 1/18 F, the resonant freq. matches the driving frequency (i.e. the system is at resonance) and therefore the max. power is absorbed / transferred.

Use standard equation for Q-factor. i.e. $Q = \frac{\omega_0 L}{R}$ to give Q = 1.5.

3. i) a) Notework / lectures for $Z_m \mbox{ expression}.$

b) For velocity, differentiate the expression at the top of the page; then simplify to sin and cosine and take real component only.

c) Standard notework for graph of velocity vs. freq.