PROBLEMS

4 Special Chapters

4.1 The set of numbers $i,-i, 1$ and -1 , with ordinary multiplication form a group.
(a) Write down the multiplication table for this group.
(b) What is the unit element of this group?
(c) What is the inverse element of -1 ?
(d) Show that this group is cyclic.
(e) Show that this group is Abelian.
4.2 Two matrices

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

with ordinary multiplication rule for matrices form a group.
(a) Write down the multiplication table for this group.
(b) What is the unit element of this group?
(c) What is the inverse element of B ?
(d) Show that this group is Abelian.
4.3 Consider a network consisting of N sites.
(a) $N / 6$ sites of this network are blocked. What is the probability of a randomly selected site being unblocked?
(b) Formulate a definition of a percolation threshold of the site problem and find a percolation threshold in a square network consisting of four sites $(N=4)$.
4.4 Find the probability $P_{2}(x)$ for a randomly chosen site to belong to a cluster consisting of not less than 2 unblocked sites, where x is unblocked site density,
(a) for a square plane lattice;
(b) for a simple cubic lattice;
(c) for an arbitrary lattice in which each site has z nearest neighbours.
4.5 For the bond percolation problem find the probability $P^{b}(x)$ of the randomly chosen site to belong to an infinite cluster for $1-x \ll 1$:
(a) for a square plane lattice;
(b) for a triangular lattice;
(c) for a honeycomb lattice.

