PHYSICS EXAMINATION PROBLEMS SOLUTIONS AND HINTS FOR STUDENT SELF-STUDY

Module Code	PHY3140	
Name of module	Methods of theoretical physics	
Date of examination	June 2007	

1. (i) (a) Poles are at
$$z = \exp(i\pi/4)$$
, $z = \exp(i3\pi/4)$, $z = \exp(i5\pi/4)$ and $z = \exp(i7\pi/4)$.

(b) Upper half of z - plane: residue of f(z) at the pole $z = \exp(i\pi/4)$ is $\frac{\exp(-i3\pi/4)}{4}$;

residue at
$$z = \exp(i3\pi/4)$$
 is $\frac{\exp(-i9\pi/4)}{4}$.

(c) $\int_{0}^{+\infty} \frac{1}{x^4 + 1} dx = \frac{\pi\sqrt{2}}{4}.$

(ii) (a)

	1	-1	i	- <i>i</i>
1	1	-1	i	- <i>i</i>
-1	-1	1	- <i>i</i>	i
Ι	i	- <i>i</i>	-1	1
- <i>i</i>	- <i>i</i>	i	1	-1

(b) E = 1.

(c) Multiplication table is symmetric (AB = BA), therefore the group is Abelian. All elements can be expressed as i^k , where k = 0,1,2,3, therefore the group is cyclic.

(d) The inverse element of -i is i.

2. (i) $\int_{0}^{2\pi} \frac{d\theta}{a+b\sin\theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}$ (for 0 < b < a). [Hint: Substitute $z = \exp(i\theta)$ and use contour integration.]

(ii) (a)
$$P_2(x) = x \left[1 - (1 - x)^4 \right] \approx 4x^2$$
 (for $x \ll 1$); (b) $P_2(x) = x \left[1 - (1 - x)^6 \right] \approx 6x^2$ (for $x \ll 1$);
(c) $P_2(x) = x \left[1 - (1 - x)^z \right] \approx zx^2$ (for $x \ll 1$).

3. (a)
$$A = 2b^{3/2}$$
. (b) $E = \left(\frac{3}{2}\right)^{3/3} \left(\frac{\hbar^2 F^2}{m}\right)^{3/3}$

4. (i) (a)
$$\beta = \pm \alpha$$
.
(b) $u = \frac{\alpha}{\beta} \exp(\alpha x) \cos(\beta y) + const$, with $\beta^2 = \alpha^2$.
(ii) $E_n = \left(\frac{9\pi^2}{32}\right)^{1/3} \left(n + \frac{1}{2}\right)^{2/3} \left(\frac{\hbar^2 F^2}{m}\right)^{1/3}$.