PHYSICS EXAMINATION PROBLEMS
 SOLUTIONS AND HINTS FOR STUDENT SELF-STUDY

Module Code	PHY3140
Name of module	Methods of theoretical physics
Date of examination	June 2007

1. (i) (a) Poles are at $z=\exp (i \pi / 4), z=\exp (i 3 \pi / 4), z=\exp (i 5 \pi / 4)$ and $z=\exp (i 7 \pi / 4)$.
(b) Upper half of z - plane: residue of $f(z)$ at the pole $z=\exp (i \pi / 4)$ is $\frac{\exp (-i 3 \pi / 4)}{4}$; residue at $z=\exp (i 3 \pi / 4)$ is $\frac{\exp (-i 9 \pi / 4)}{4}$.
(c) $\int_{0}^{+\infty} \frac{1}{x^{4}+1} \mathrm{~d} x=\frac{\pi \sqrt{2}}{4}$.
(ii) (a)

	1	-1	i	$-i$
1	1	-1	i	$-i$
-1	-1	1	$-i$	i
I	i	$-i$	-1	1
$-i$	$-i$	i	1	-1

(b) $E=1$.
(c) Multiplication table is symmetric ($A B=B A$), therefore the group is Abelian.

All elements can be expressed as i^{k}, where $k=0,1,2,3$, therefore the group is cyclic.
(d) The inverse element of $-i$ is i.
2. (i) $\int_{0}^{2 \pi} \frac{d \theta}{a+b \sin \theta}=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}$ (for $0<b<a$). [Hint: Substitute $z=\exp (i \theta)$ and use contour integration.]
(ii)
(a) $P_{2}(x)=x\left[1-(1-x)^{4}\right] \approx 4 x^{2}$ (for $\left.x \ll 1\right)$;
(b) $P_{2}(x)=x\left[1-(1-x)^{6}\right] \approx 6 x^{2}($ for $x \ll 1)$;
(c) $P_{2}(x)=x\left[1-(1-x)^{2}\right] \approx z x^{2}($ for $x \ll 1)$.
3.
(a) $A=2 b^{3 / 2}$.
(b) $\quad E=\left(\frac{3}{2}\right)^{5 / 3}\left(\frac{\hbar^{2} F^{2}}{m}\right)^{1 / 3}$.
4. (i)
(a) $\beta= \pm \alpha$.
(b) $\quad u=\frac{\alpha}{\beta} \exp (\alpha x) \cos (\beta y)+$ const, with $\beta^{2}=\alpha^{2}$.
(ii)

$$
E_{n}=\left(\frac{9 \pi^{2}}{32}\right)^{1 / 3}\left(n+\frac{1}{2}\right)^{2 / 3}\left(\frac{\hbar^{2} F^{2}}{m}\right)^{1 / 3} .
$$

