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Functions of a Complex Variable

FUNCTIONS
If to each of a set of complex numbers

which a variable z  may assume there
corresponds one or more values of a variable
w , then w  is called a function of the
complex variable z , written )(zfw = .

A function is single-valued if for each
value of z  there is only one value of w ;
otherwise it is multiple-valued or many-
valued. In general we can write == )(zfw

),(),( yxivyxu + , where u and v  are real
functions of x  and y .

Example 1:

ixyyxiyxzw 22222 +−=+== )(  so that
22 yxyxu −=),( , xyyxv 2=),( . These are 

called real and imaginary parts of 2zw =
respectively.

Unless otherwise specified we shall
assume that )(zf  is single-valued. A function,
which is multiple-valued, can be considered
as a collection of single-valued functions.
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LIMITS AND CONTINUITY
Definitions of limits and continuity for

functions of a complex variable are similar to
those for a real variable. Thus, )(zf  is said to
have the limit l  as z  approaches 0z , if given
any 0>ε , there exist a 0>δ , such that

ε<− l)(zf  whenever δ<−< 00 zz .
Similarly, )(zf  is said to be continuous at

0z  if, given any 0>ε , there exist a 0>δ ,
such that ε<− )()( 0zfzf  when δ<− 0zz .
Alternatively, )(zf  is continuous at 0z  if
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DERIVATIVES
If )(zf  is single-valued in some region of

the z  plane the derivative of )(zf , denoted
by )(zf ′ , is defined as

z
zfzzf

z ∆
−∆+

→∆

)()(
lim

0
(1)

provided the limit exists independent of the
manner in which 0→∆z . If this limit exists
for 0zz = , then )(zf  is called analytic at 0z . If
the limit (1) exists for all z  in a region R, then

)(zf  is called analytic in R. In order to be
analytic )(zf  must be single-valued and
continuous. The converse, however, is not
necessarily true.
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We define elementary functions of a
complex variable by a natural extension of
the corresponding functions of a real
variable. Where series expansions for real
functions )(xf  exist, we can use as definitions
the series with x  replaced by z .

Example 2: We define

�++++=
!! 32

1
32 zz

zez ,

,
!!!

)sin( �+−+−=
753

753 zzz
zz

.
!!!

)cos( �+−+−=
642

1
642 zzz

z

From these we can show that == + iyxz ee
)sin(cos yiyex + , as well as many other 

relations.
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Example 3:

We define ba  as abe ln  even when a and b
are complex numbers. Since 12 =πike , it 

follows that )( π+φφ = kii ee 2  and we define 

( ) )(lnlnln π+φ+ρ=ρ= φ kiez i 2 .

Thus zln  is a many-valued function. The 
various single-valued functions of which this 
many-valued function is composed are called
its branches.

Rules for differentiating functions of a
complex variable are much the same as for
those of real variables. Thus

( ) 1−= nn nzz
zd

d
,

( ) zz ee
z

=
d
d

,

( ) zz
z

cossin
d
d = ,

( ) zz
z

sincos
d
d −= ,

etc.
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CAUCHY-RIEMANN EQUATIONS

A necessary condition, that == )(zfw
),(),( yxivyxu +  be analytic in a region R is

that u and v  satisfy the Cauchy-Riemann
equations

y
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This condition is easy to prove first choosing
0=∆y  (thus xz ∆=∆ ), then choosing 0=∆x

(thus yiz ∆=∆ ), and finally equating the
expressions for the derivatives of )(zf
obtained in these two cases. If the partial
derivatives in (2) are continuous in R, the
equations are sufficient conditions that )(zf
be analytic in R.

If the second derivatives of u and v  with
respect to x  and y  exist and are continuous,
we find by differentiating (2) that
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Thus u and v  satisfy Laplace’s equation in 2
dimensions. Functions satisfying Laplace’s
equation are called harmonic functions.
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INTEGRALS

If )(zf  is single-valued and continuous in
a region R we define the integral of )(zf
along some path C in R from point 1z  to point

2z , where 111 iyxz += , =2z 22 iyx + , as

=++= ∫∫
+
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)dd)((d)( 22

11

iyx

iyxc
yixivuzzf

∫∫
+

+
+

+
++− )(

)(
)(

)(
dddd 22

11

22

11

iyx

iyx

iyx

iyx
yuxviyvxu (4)

with this definition the integral of a function of
a complex variable can be made to depend
on line integrals for real functions already
considered in Math-2 (see, e.g. Chapter 6 of
Spiegel’s textbook). An alternative definition
based on the limit of a sum, as for functions
of a real variable, can also be formulated and
turns out to be equivalent to the one above.

The rules for complex integration are
similar to those for real integrals. An
important result is

∫∫∫ =≤≤
ccc

MLsMzfzf dzd)(zd)( .

Here M  is the upper bound of )(zf  on C, i.e.
Mzf ≤)( , and L  is the length of the path C.
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CAUCHY’S THEOREM

Let C be a simple closed curve. If )(zf  is
analytic within the region bounded by C as
well as on C, then we have Cauchy ’s
theorem that

0==∫ ∫c c
zzfzzf d)(d)( , (5)

where the second integral emphasises the
fact that C is a simple closed curve.

Expressed in another way, equation (5) is

equivalent to the statement that ∫ 2

1

z

z
zzf d)(

has a value indepe ndent of the path joining
1z  and 2z . Such integrals can be evaluated

as ( ) ( )12 zFzF −  where )()( zfzF =′ .
The proof of Cauchy’s theorem follows

immediately from Eq. (4), Cauchy-Riemann
equations (3) and Green’s theorem in the
plane (see Math-2 or Chapter 6 of Spiegel):
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Example 4:Since zzf =)(  is analytic everywhere
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CAUCHY’S INTEGRAL FORMULAS

If )(zf  is analytic within and on a simple
closed curve C and a  is any point interior to
C, then

∫ −π
=

C
z

z
zf

i
f d

)(
)(

a
a

2
1

, (6)

where C is traversed in the positive (counter-
clockwise) sense.

Also, the nth derivative of )(zf  at az =  is
given by

∫ +−π
=

C n
n z

z
zf

i
n

f d
)(
)(!

)()(
12 a

a . (7)

Equations (6) and (7) are called
Cauchy ’s integral formulas. They are quite
remarkable because they show that if the
function )(zf  is known on  the closed curve C
then it is also known wit hin C, and the
various derivatives at points within C can be
calculated. Thus if a function of a complex
variable has a first derivative, it has all higher
derivatives as well. This of course is not
necessarily true for functions of real
variables.
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TAYLOR’S SERIES

Let )(zf  be analytic inside and on a circle
having its centre at az = . Then for all points
z  in the circle we have the Taylor series
representation of )(zf  given by

�+−
′′

+−′+= 2)(
!2

)(
))(()()( az

af
azafafzf  (8)

SINGULA R POINTS

A singular point of a function )(zf  is a
value of z  at which )(zf  fails to be analytic. If

)(zf  is analytic everywhere in some region
except at interior except at an interior point

az = , we call az =  an isolated singularity of
)(zf .

Example 5: If 
3)5(

1
)(

−
=

z
zf , then 5=z  is an

isolated singularity of )(zf .
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POLES

If 
naz

z
zf

)(

)(
)(

−
φ= , 0)( ≠φ a , where )(zφ  is

analytic everywhere in the region including
az = , and if n is a positive integer, then )(zf

has an isolated singularity at az =  which is
called a pole of order n. If 1=n , the pole is
often called a simple pole; if 2=n  it is called
a double pole, etc.

Example 6:
)2()5(

)(
2

3

+−
=

zz

z
zf

has two singularities: a pole of the order 2 or
double pole at 5=z , and a pole of order 1 or
simple pole at 2−=z .

A function can have other types of
singularities besides poles. For example

zzf =)(  has a branch point at 0=z . The

function 
z

z
zf

sin
)( =  has a singularity at 0=z .

However, since 
z

z
z

sin
lim

0→
 is finite,  we call

such a singularity removable singularity.
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LAURENT SERIES

If )(zf  has a pole of order n at az =  but is
analytic at every other point inside and on a
circle C  with centre at a , then )()( zfaz n−  is
analytic at all points inside and on C  and has
a Taylor series about az =  so that
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This is called a Laurent series for )(zf . The

part �+−+−+ 2
210 )()( azaazaa  is called the

analytic part, while the remainder consisting
of inverse powers of az −  is called the
principal part. More generally, we refer to

the series ∑
∞

−∞=
−

k

k
k aza )(  as a Laurent series

where the terms with 0<k  constitute the
principal part. A function which is analytic in
a region bounded by two concentric circles
having centre at az =  can always be
expanded in such a Laurent series.
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It is possible to define various types of
singularities of a function )(zf  from its
Laurent series. For example, when the
principal part of a Laurent series has a finite
number of terms and 0≠−na  while 1−−na ,

2−−na , … are all zero, then az =  is a pole of
order n. If the principal part has infinitely
many terms, az =  is called an essential
singularity or sometimes a pole of infinite
order.

Example 7:

The function �+++=
2!2

11
1)/1exp(

zz
z  has

an essential singularity at 0=z .
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RESIDUES 

The coefficients in (9) can be obtained by
writing the coefficients for the Taylor series
corresponding to )()( zfaz n− . The coefficient

1−a , called the residue of )(zf  at the pole
az = , is of considerable importance. It can be

found from the formula

{ })()(
d

d
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a n
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−

−
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→
−  (10)

where n is the order of the pole. For simple
poles the calculation of the residue is of
particular simplicity since it reduces to

)()(lim1 zfaza
az

−=
→

− (11)

Example 8: If 
2)2(

1
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−
=

zz
zf , then 0=z  is a

simple pole, 2=z  is a pole of order 2. Thus:

Residue at 0=z  is 
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RESIDUE THEOREM

If )(zf  is analytic in a region R except for
a pole of order n at az =  and if C  is any
simple closed curve in R containing az = ,
then )(zf  has the form (9) (Laurent series).
Integrating (9), and using the fact that





=
=π

=
−∫

�,4,3,2if0

1 if2
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d
n

ni
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(12)

(see Problem 1.7), it follows that

12d)( −π=∫ aizzf
c

(13)

i.e. the integral of )(zf  around a closed path
enclosing a single pole of )(zf  is iπ2  times
the residue at the pole.

More generally, we have the following
Theorem 1: If )(zf  is analytic within and on
the boundary C  of a region R except at a finite
number of poles �,,, cba  within R, having
residues �,,, 111 −−− cba  respectively, then

)(2d)( 111 �+++π= −−−∫ cbaizzf
c

(14)

Cauchy’s theorem and integral formula are
special cases of this result, which we call the
residue theorem.
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EVALUATION OF DEFINITE INTEGRALS
The evaluation of various real definite

integrals can often be achieved by using the
residue theorem together with a suitable function

)(zf  and a suitable path or contour C , the
choice of which may require great ingenuity. The
following types are most common in practice.

1. xxF∫
∞

0

d)( , )(xF  is an even function.

Consider ∫C zzF d)(  along a contour C

consisting of the line along the x axis from
R−  to R+  and the semi-circle above the x

axis having this line as diameter. Then let
.∞→R

2. θθθ∫
π

d)cos,(sin
2

0

G , G  is a rational function

of θsin  and θcos .

Let θ= iez . Then 
i

zz
2

sin
1−−=θ , 

2
cos

1−+=θ zz

and d�d �iiez =  or izz /dd =θ . The integral is

equivalent to ∫c zzF d)(  where C is the unit

circle with center at the origin.
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3. x
mx
mx

F(x) d
)sin(
)cos(









∫
∞

∞−
, )(xF  is a 

rational function.
Here we consider ∫c

imz zezF d)(  where 

C is the same contour as that in Type 1.

4. Miscellaneous integrals involving 
particular contours. See Problems.

Useful property of contour integrals:

If kR
M

zf ≤)(  for θ= ieRz , where 1>k  and

M  are constants, then 0=∫Γ∞→
zzf

R
d)(lim

where Γ  is the semi-circular arc of radius
R  above the x  axis.

Proof:

By the result at the bottom of page 7, we
have

1−ΓΓ
π=π≤≤ ∫∫ kk R
M

R
R
M

zzfzzf d)(d)(

since the length of arc RL π= . Then

0=∫Γ∞→
zzf

R
d)(lim  and so 0=∫Γ∞→

zzf
R

d)(lim .


