PHY2023 Supplement 3: Stirling's approximation

The quantity *n*! arises very often in statistical mechanics, because it is fundamentally involved in the calculation of the number of permutations and combinations of *n* objects. However, it is a function that offers very little scope for algebraic simplification. Fortunately, for realistic systems *n* is a large number (typically it is the umber of atoms in an ensemble and 1 gram of gas will contain of order $n = 10^{23}$ atoms). Hence the following approximation is extremely useful

For large n:

 $\ln n! \approx n \ln n - n$

Stirling's approximation

The approximation becomes quite accurate very quickly :-

n	<i>n</i> !	ln <i>n</i> !	<i>n</i> ln <i>n - n</i>
1	1	0	-1
2	2	0.693147	-0.613706
5	120	4.787492	3.04719
10	3628800	15.10441	13.02585
20	2.43E+18	42.33562	39.91465
30	2.65E+32	74.65824	72.03592
50	3.04E+64	148.4778	145.6012
100	9.3E+157	363.7394	360.517

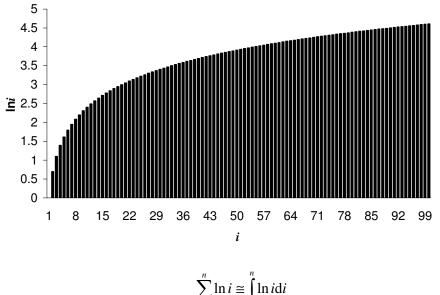
i.e. it is 1% accurate with n = 100, so the accuracy with $n = 10^{23}$ will be extremely high.

A formal proof of Stirling's approximation is beyond our scope, but a less rigorous proof goes as follows:

$$n! = \prod_{i=1}^{n} i$$

$$\therefore \ln n! = \ln \left(\prod_{i=1}^{n} i \right) = \sum_{i=1}^{n} \ln i$$

For large *n*, the discrete sum above can be approximated by a continuous integral



The shaded area equals the value of the discrete sum

$$\sum_{i=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j$$

Consider the indefinite integral $\int \ln x dx$. By inspection, we see that

$$\frac{\mathrm{d}}{\mathrm{d}x}(x\ln x - x) = \frac{x}{x} + \ln x - 1 = \ln x$$
$$\therefore \int \ln x \mathrm{d}x = x \ln x - x + c$$

Hence $\int_{1}^{n} \ln i di = n \ln n - n + 1$ For large *n* the 1 is insignificant, hence we obtain

$$\ln n! \approx n \ln n - n$$