PHY2023 Supplement 3: Stirling's approximation

The quantity n ! arises very often in statistical mechanics, because it is fundamentally involved in the calculation of the number of permutations and combinations of n objects. However, it is a function that offers very little scope for algebraic simplification. Fortunately, for realistic systems n is a large number (typically it is the umber of atoms in an ensemble and 1 gram of gas will contain of order $n=10^{23}$ atoms). Hence the following approximation is extremely useful

For large n :

$$
\ln n!\approx n \ln n-n
$$

Stirling's approximation

The approximation becomes quite accurate very quickly :-

n		$n!$	$\ln n!$	$n \ln n-n$
1	1	0	-1	
2	2	0.693147	-0.613706	
5	120	4.787492	3.04719	
10	3628800	15.10441	13.02585	
20	$2.43 \mathrm{E}+18$	42.33562	39.91465	
30	$2.65 \mathrm{E}+32$	74.65824	72.03592	
50	$3.04 \mathrm{E}+64$	148.4778	145.6012	
100	$9.3 \mathrm{E}+157$	363.7394	360.517	

i.e. it is 1% accurate with $n=100$, so the accuracy with $n=10^{23}$ will be extremely high.

A formal proof of Stirling's approximation is beyond our scope, but a less rigorous proof goes as follows:

$$
\begin{aligned}
& n!=\prod_{i=1}^{n} i \\
& \therefore \ln n!=\ln \left(\prod_{i=1}^{n} i\right)=\sum_{i=1}^{n} \ln i
\end{aligned}
$$

For large n, the discrete sum above can be approximated by a continuous integral

The shaded area equals the value of the discrete sum

Consider the indefinite integral $\int \ln x \mathrm{~d} x$. By inspection, we see that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(x \ln x-x)=\frac{x}{x}+\ln x-1=\ln x
$$

$\therefore \int \ln x \mathrm{~d} x=x \ln x-x+c$
Hence $\int_{1}^{n} \ln i \mathrm{~d} i=n \ln n-n+1$
For large n the 1 is insignificant, hence we obtain

$$
\ln n!\approx n \ln n-n
$$

