PHY2023 Supplement 2: Lagrange Undetermined Multipliers (non-examinable).

We require to maximise

$$\Omega = \frac{N!}{\prod_{i=0}^{\infty} n_i!}$$
subject to the constraints $\sum_{i=0}^{\infty} n_i = N$ $\sum_{i=0}^{\infty} n_i \varepsilon_i = U$

Firstly, note that maximising Ω is equivalent to maximising $\ln \Omega$, hence we wish to maximise

$$\ln \Omega = \ln N! - \sum_{i=0}^{\infty} \ln n_i!$$

Secondly, note that for any realistic system N and all the n_i 's will be very large, so we can apply the following approximation

$$\ln x! \cong x \ln x - x$$
 (for large x, "Stirling's approximation")

[This approximation is very widely used in statistical mechanics, so should be learnt. See Mandl or the 'Supplementary 3' sheet for more details.]

Combining these results, we wish to maximize

$$\ln \Omega \cong N \ln N - N - \sum_{i=0}^{\infty} (n_i \ln n_i - n_i)$$

$$\cong N \ln N - N - \sum_{i=0}^{\infty} n_i \ln n_i + \sum_{i=0}^{\infty} n_i$$

$$\cong N \ln N - \sum_{i=0}^{\infty} n_i \ln n_i$$

(since $N = \sum_{i=0}^{\infty} n_i$).

subject to the constraints $\sum_{i=0}^{\infty} n_i = N$ $\sum_{i=0}^{\infty} n_i \varepsilon_i = U$.

Although the minimum possible change in any n_i is 1, since n_i is itself extremely large i.e. $\delta n_i \ll n_i$, we can effectively consider that it is possible to perturb any n_i by an infinitesimally small amount dn_i . Our problem is thus to find the values of n_i that yield <u>no change in ln Ω to first order</u>, when any n_i is perturbed by dn_i . Compare this to finding the maximum of a function y(x); we seek a value of x that causes no change in y to first order when x is perturbed by dx i.e. we seek dy/dx = 0. Our problem is similar, except that ln Ω is a function of many variables (all the n_i 's). Consider locating the maximum of a function of 2 variables, e.g. finding the highest point on a surface z(x,y). The maximum (or minimum) is the point that satisfies

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = 0$$

Hence we seek the n_i 's that satisfy

$$\frac{\partial \ln \Omega}{\partial n_i} = 0 \quad \forall i = 0 \dots \infty \text{ subject to the constraints } \sum_{i=0}^{\infty} n_i = N \quad \sum_{i=0}^{\infty} n_i \,\varepsilon_i = U \,.$$

In the figure above, the intersection of the pink and green lines is the <u>unconstrained</u> maximum of the function $\underline{z}(x,y)$. A constrained maximum would be the maximum value of *z*, given that some relation must also exist between *x* and *y*. e.g. if the constraint is that y = x/3 then the constrained maximum is the largest value of *z* that can be found lying along the line y = x/3 :-

To find the maximum of z(x,y) satisfying y = x/3, express the constraint equation as 3y - x = 0 and invent a new function

$$\Gamma(x, y, \lambda) = z(x, y) - \lambda(3y - x)$$

i.e. a function of 3 variables, x, y and λ , where λ is an "undetermined multiplier". Consider locating an unconstrained maximum of this function. This is a point at which

$$\frac{\partial \Gamma(x, y, \lambda)}{\partial x} = \frac{\partial \Gamma(x, y, \lambda)}{\partial y} = \frac{\partial \Gamma(x, y, \lambda)}{\partial \lambda} = 0$$

Since $\frac{\partial \Gamma(x, y, \lambda)}{\partial \lambda} = -(3y - x)$, an unconstrained maximum of Γ must be a set of values

 (x,y,λ) where x and y <u>automatically</u> satisfy our constraint equation. Also, since at any point satisfying the constraint equation we must have $\Gamma(x,y,\lambda) = z(x,y)$ it follows that since we cannot find a larger value of Γ for any (x, y, λ) we also cannot find a larger value of z(x,y) where x and y also satisfy our constraint equation. The problem of finding a constrained maximum of a function is thus reduced to finding a conventional unconstrained maximum of a modified function. Further constraints can be added by introducing more undetermined multipliers and supplementing Γ with the additional constraint equations.

Applying this idea to our original problem, we seek an unconstrained maximum of

$$\Gamma = \ln \Omega - \lambda \left(\sum_{i=0}^{\infty} n_i - N \right) - \beta \left(\sum_{i=0}^{\infty} n_i \varepsilon_i - U \right)$$
 w.r.t. all the n_i 's, λ and β .

i.e. applying our approximate form for
$$\ln\Omega$$
 we seek to maximise

$$\Gamma = N \ln N - \sum_{i=0}^{\infty} n_i \ln n_i - \lambda \left(\sum_{i=0}^{\infty} n_i - N \right) - \beta \left(\sum_{i=0}^{\infty} n_i \varepsilon_i - U \right)$$

Let us concentrate on maximising Γ w.r.t the n_i 's. We thus require the gradient of Γ to vanish w.r.t all of the n_i 's simultaneously. Noting that N and U are constants, this requires

$$\frac{\partial (n_i \ln n_i + \lambda n_i + \beta n_i \varepsilon_i)}{\partial n_i} = 0 \quad \forall n_i, \quad \text{hence}$$

$$1 + \ln n_i + \lambda + \beta \varepsilon_i = 0 \quad \forall n_i. \quad \text{Rearranging, yields for each } n_i \text{ the relation}$$

$$\ln n_i = -(1 + \lambda) - \beta \varepsilon_i \quad \text{, hence}$$

$$n_i = \exp(-(1 + \lambda))\exp(-\beta \varepsilon_i)$$

i.e. n_i decreases exponentially as the energy of the corresponding level ε_i increases.

Note that at this point the multipliers λ and β remain to be determined. This can be done by applying our constraint equations. e.g. since $\sum_{i=0}^{\infty} n_i = N$ we have

$$\sum_{i=0}^{\infty} n_i = \sum_{i=0}^{\infty} \exp(-(1+\lambda))\exp(-\beta\varepsilon_i) = \exp(-(1+\lambda))\sum_{i=0}^{\infty} \exp(-\beta\varepsilon_i) = N,$$

hence
$$\exp(-(1+\lambda)) = \frac{N}{\sum_{i=0}^{\infty} \exp(-\beta\epsilon_i)}$$
,
leading to $n_i = \frac{N \exp(-\beta\epsilon_i)}{\sum_{i=0}^{\infty} \exp(-\beta\epsilon_i)}$ i.e.
 $\frac{n_i}{N} = \frac{\exp(-\beta\epsilon_i)}{\sum_{i=0}^{\infty} \exp(-\beta\epsilon_i)}$