PHY2023 Supplement 2: Lagrange Undetermined
 Multipliers (non-examinable).

We require to maximise

$$
\Omega=\frac{N!}{\prod_{i=0}^{\infty} n_{i}!}
$$

subject to the constraints $\sum_{i=0}^{\infty} n_{i}=N \quad \sum_{i=0}^{\infty} n_{i} \varepsilon_{i}=U$
Firstly, note that maximising Ω is equivalent to maximising $\ln \Omega$, hence we wish to maximise

$$
\ln \Omega=\ln N!-\sum_{i=0}^{\infty} \ln n_{i}!
$$

Secondly, note that for any realistic system N and all the n_{i} 's will be very large, so we can apply the following approximation

$$
\ln x!\cong x \ln x-x \text { (for large } x \text {, "Stirling's approximation") }
$$

[This approximation is very widely used in statistical mechanics, so should be learnt. See Mandl or the 'Supplementary 3' sheet for more details.]

Combining these results, we wish to maximize

$$
\begin{aligned}
\ln \Omega & \cong N \ln N-N-\sum_{i=0}^{\infty}\left(n_{i} \ln n_{i}-n_{i}\right) \\
& \cong N \ln N-N-\sum_{i=0}^{\infty} n_{i} \ln n_{i}+\sum_{i=0}^{\infty} n_{i} \\
& \cong N \ln N-\sum_{i=0}^{\infty} n_{i} \ln n_{i}
\end{aligned}
$$

$$
\text { (since } N=\sum_{i=0}^{\infty} n_{i} \text {). }
$$

subject to the constraints $\sum_{i=0}^{\infty} n_{i}=N \quad \sum_{i=0}^{\infty} n_{i} \varepsilon_{i}=U$.

Although the minimum possible change in any n_{i} is 1 , since n_{i} is itself extremely large i.e. $\delta n_{i} \ll n_{i}$, we can effectively consider that it is possible to perturb any n_{i} by an infinitesimally small amount $\mathrm{d} n_{i}$. Our problem is thus to find the values of n_{i} that yield no change in $\ln \Omega$ to first order, when any n_{i} is perturbed by $\mathrm{d} n_{i}$. Compare this to finding the maximum of a function $y(x)$; we seek a value of x that causes no change in y to first order when x is perturbed by $\mathrm{d} x$ i.e. we seek $\mathrm{d} y / \mathrm{d} x=0$. Our problem is similar, except that $\ln \Omega$ is a function of many variables (all the n_{i} 's). Consider locating the maximum of a function of 2 variables, e.g. finding the highest point on a surface $z(x, y)$. The maximum (or minimum) is the point that satisfies

$$
\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}=0
$$

Hence we seek the n_{i} 's that satisfy
$\frac{\partial \ln \Omega}{\partial n_{i}}=0 \quad \forall i=0 \ldots \infty \underline{\text { subject to the constraints }} \sum_{i=0}^{\infty} n_{i}=N \quad \sum_{i=0}^{\infty} n_{i} \varepsilon_{i}=U$.
In the figure above, the intersection of the pink and green lines is the unconstrained maximum of the function $\underline{z}(x, y)$. A constrained maximum would be the maximum value of z, given that some relation must also exist between x and y. e.g. if the constraint is that $y=x / 3$ then the constrained maximum is the largest value of z that can be found lying along the line $y=x / 3$:-

To find the maximum of $z(x, y)$ satisfying $y=x / 3$, express the constraint equation as $3 y-x=0$ and invent a new function

$$
\Gamma(x, y, \lambda)=z(x, y)-\lambda(3 y-x)
$$

i.e. a function of 3 variables, x, y and λ, where λ is an "undetermined multiplier". Consider locating an unconstrained maximum of this function. This is a point at which

$$
\frac{\partial \Gamma(x, y, \lambda)}{\partial x}=\frac{\partial \Gamma(x, y, \lambda)}{\partial y}=\frac{\partial \Gamma(x, y, \lambda)}{\partial \lambda}=0
$$

Since $\frac{\partial \Gamma(x, y, \lambda)}{\partial \lambda}=-(3 y-x)$, an unconstrained maximum of Γ must be a set of values (x, y, λ) where x and y automatically satisfy our constraint equation. Also, since at any point satisfying the constraint equation we must have $\Gamma(x, y, \lambda)=z(x, y)$ it follows that since we cannot find a larger value of Γ for any (x, y, λ) we also cannot find a larger value of $z(x, y)$ where x and y also satisfy our constraint equation. The problem of finding a constrained maximum of a function is thus reduced to finding a conventional unconstrained maximum of a modified function. Further constraints can be added by introducing more undetermined multipliers and supplementing Γ with the additional constraint equations.

Applying this idea to our original problem, we seek an unconstrained maximum of $\Gamma=\ln \Omega-\lambda\left(\sum_{i=0}^{\infty} n_{i}-N\right)-\beta\left(\sum_{i=0}^{\infty} n_{i} \varepsilon_{i}-U\right)$ w.r.t. all the n_{i} 's, λ and β.
i.e. applying our approximate form for $\ln \Omega$ we seek to maximise
$\Gamma=N \ln N-\sum_{i=0}^{\infty} n_{i} \ln n_{i}-\lambda\left(\sum_{i=0}^{\infty} n_{i}-N\right)-\beta\left(\sum_{i=0}^{\infty} n_{i} \varepsilon_{i}-U\right)$
Let us concentrate on maximising Γ w.r.t the n_{i} 's. We thus require the gradient of Γ to vanish w.r.t all of the n_{i} 's simultaneously. Noting that N and U are constants, this requires
$\frac{\partial\left(n_{i} \ln n_{i}+\lambda n_{i}+\beta n_{i} \varepsilon_{i}\right)}{\partial n_{i}}=0 \quad \forall n_{i}, \quad$ hence
$1+\ln n_{i}+\lambda+\beta \varepsilon_{i}=0 \quad \forall n_{i} . \quad$ Rearranging, yields for each n_{i} the relation
$\ln n_{i}=-(1+\lambda)-\beta \varepsilon_{i} \quad$, hence
$n_{i}=\exp (-(1+\lambda)) \exp \left(-\beta \varepsilon_{i}\right)$
i.e. n_{i} decreases exponentially as the energy of the corresponding level ε_{i} increases.

Note that at this point the multipliers λ and β remain to be determined. This can be done by applying our constraint equations. e.g. since $\sum_{i=0}^{\infty} n_{i}=N \quad$ we have

$$
\sum_{i=0}^{\infty} n_{i}=\sum_{i=0}^{\infty} \exp (-(1+\lambda)) \exp \left(-\beta \varepsilon_{i}\right)=\exp (-(1+\lambda)) \sum_{i=0}^{\infty} \exp \left(-\beta \varepsilon_{i}\right)=N,
$$

hence $\exp (-(1+\lambda))=\frac{N}{\sum_{i=0}^{\infty} \exp \left(-\beta \varepsilon_{i}\right)}$,
leading to $n_{i}=\frac{N \exp \left(-\beta \varepsilon_{i}\right)}{\sum_{i=0}^{\infty} \exp \left(-\beta \varepsilon_{i}\right)}$ i.e.

$$
\frac{n_{i}}{N}=\frac{\exp \left(-\beta \varepsilon_{i}\right)}{\sum_{i=0}^{\infty} \exp \left(-\beta \varepsilon_{i}\right)}
$$

