
Fourier Analysis Problem Set 1

1. Prove that an odd function can contain no cosine terms in its full range
Fourier expansion. (Break the integral for the coefficient an  into two parts
for x < 0  and x > 0 , and show that these are equal and opposite).      [4]
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3. Show that the Fourier series expansion of
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in the interval − L, L( ) may be written as
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4. (a) By making a Fourier series expansion of

f x( )=
sin x, 0 ≤ x ≤ π
0, − π ≤ x ≤ 0

 
 
 

in the interval −π ,π( ), show that for 0 ≤ x ≤ π
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(b) Use the series to show that
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5. The Fourier expansion of a function f x( ) in the interval − L, L( ) is given by
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By squaring both sides of the equation and integrating from − L  to L , prove
that
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(This result is known as Parseval’s identity)

6. A low pass filter passes all frequencies below 800 Hz and removes all of
those above 800 Hz.  Make a sketch of how a square wave signal of period
10 ms would look after passing through the filter and describe its form in
detail . (Hint: begin by find the Fourier expansion of the square wave)

[7]


