Differential Calculus Problem Set 2

- 1. A region of the xy plane is bounded by $y^2 = 3x$ and y = x. Make a sketch of this region and calculate its area. [5]
- 2. The base of a triangular sand box lies in the xy plane and is bounded by the lines y=1-x, x=0, and y=0. If the height of the sand in the box is given by h(x,y) = xy then find the volume of sand in the box. Make a sketch of this volume. [6]
- of this volume. [6] 3. A semi-circular sheet in the upper half plane is bounded by $x^2 + y^2 = a^2$ and y = 0. The mass per unit area is given by the function $\sigma(x, y) = \sqrt{x^2 + y^2} \tan^{-1}\left(\frac{y}{x}\right)$. Find the mass of the sheet. [5]
- 4. Find the mass of the region corresponding to $x^2 + y^2 + z^2 \le 3$, $x \ge 0$, $y \ge 0$, $z \ge 0$, if the density is equal to xyz. [5]
- 5. Show that the volume of the region bounded by the cone $z = \sqrt{x^2 + y^2}$ and the paraboloid $z = x^2 + y^2$ is $\pi / 6$. [5]
- 6. Evaluate $\iiint_{\Re} \frac{x^2 \, dx \, dy \, dz}{\left(x^2 + y^2 + z^2\right)}$ where \Re is the region bounded by the spheres $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$. (b > a) [6]

7. Evaluate
$$\int_{(1,1)}^{(9,3)} \left[(x+y)dx + (y-x)dy \right]$$
 along

- (a) the parabola $y^2 = x$,
- (b) the straight line joining the initial and final points. [6]
- 8. The trajectory of a particle is described by $x = at^2$, $y = bt^3$. Find the distance travelled as t increases from 0 to T [4]
- 9. Evaluate $\int_C y^2 x \, ds$ where *C* is the part of the curve $x^2 + y^2 = a^2$ that lies above the *x* axis, begins at $\left(a / \sqrt{2}, a / \sqrt{2}\right)$ and ends at (-a, 0). [3]