PHYSICS EXAMINATION PROBLEMS SOLUTIONS AND HINTS FOR STUDENT SELF-STUDY

Module Code	PHY2201
Name of module	Statistical Physics
Date of examination	Jan 2005

- 1. i) see course notes.
 - ii) Because *S* is a <u>function of state</u> (see course notes).
 - iii) see course notes, +ve as process is irreversible.
- Probability that a particle has x-comp of velocity in range v_x to v_x+dv_x

Isotropy and independence of $v_x v_y$ and v_z imply $p(v_x) p(v_y) p(v_z) = f(v_x^2 + v_y^2 + v_z^2)$

Use variable substitution $\varepsilon = mv^2/2$ and $p(\varepsilon)d\varepsilon = p(v)dv$

 $\varepsilon^{1/2}$ is density-of-states factor, $\exp(-\beta \varepsilon)$ is Boltzmann factor.

3 see course notes.

See course notes.

Centrifugal force at distance r from axis is $m_A\omega^2 r$. This results in an apparent gradient of potential energy in the radial direction. Since potential is highest at smaller r's we have $\varepsilon(r) = -m_A\omega^2 r^2/2$. Substitute into Boltzmann distribution.

- 4. i) see course notes
 - ii) see course notes
 - iii) For a gas, work done increasing volume by dV is -pdV (-ve because we must do work to compress the gas). For the rubber, the work done increasing the length by dl is +fdl where f is the tensile force produced by the rubber. Substitute this into fundamental thermodynamic relationship in place of -pdV. Then use dF = dU d(TS). $\Delta S = -3.3 \times 10^{-5} \text{ J K}^{-1}.$
- 5. (i) $S = k_{\rm B} \ln \Omega$
 - (ii) see course notes

Zero-point energy of quantum harmonic oscillator

Use $c_v = (\partial U/\partial T)_v$

See notes

 c_v (actual) = 0.26 c_v (classical)