PHYSICS EXAMINATION PROBLEMS **SOLUTIONS AND HINTS FOR STUDENT SELF-STUDY**

Module Code	PHY2201
Name of module	Statistical Physics
Date of examination	Jan 2004

- 1. i) see course notes
 - 5×10^{-6} ii)
 - iii) see course notes
- 2 see course notes
 - e.g. Entropy, Volume, particle number, Free Energy, Gibbs Free Energy, Enthalpy, Heat Capacity (all extensive)
 - e.g. pressure, temperature, mass density, particle number density, specific heat capacity, chemical potential (all intensive)

see course notes

$$\Delta S = nR \ln \left(\frac{V_1 + V_2}{V_1} \right)$$

$$\Delta S = \int_{initial}^{final} \frac{d'Q}{T}$$
 only for reversible changes

Hint. The density of states factor is $2\pi v dv$ Normalisation requires $\int p(v) dv = 1$ 3.

Hint.
$$\langle \varepsilon \rangle = \int_{0}^{\infty} p(\varepsilon) \varepsilon d\varepsilon = \int_{0}^{\infty} p(v) \left(\frac{1}{2} m v^{2}\right) dv$$

Yes. See course notes

- 4. see course notes
 - $\eta = \frac{W}{Q_1} = \frac{Q_1 Q_2}{Q_1}$. $\eta > \eta_{rev}$ violates Kelvin's statement of second law if reversible engine is used in reverse as a

heat pump to restore reservoirs used by irreversible engine (see course notes).

- $3.78 \times 10^3 \text{ J}$; zero JK⁻¹ iii)
- 5. $S = k_{\rm B} \ln \Omega$
 - a) zero
- b) $k_{\rm B} \ln 5$ c) $k_{\rm B} \ln 30$

macrostate c)

see course notes