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Multiple Integrals

1D integrals: see page 5 of Spiegel.

Double integrals
Sand in a box has height h x, y( ).
What is the total volume of sand?

Divide the sand box into boxes of volume
approximately given by

( ) ( ) AyxhyxyxhV jiji ∆=∆∆=∆ ,, .
( )ji yx ,  are the coordinates of the corner of

a particular box.

Then sum the volumes of the small boxes
( ) ( )∑∑ ∆∆=∆=

ji
jiji

ji
ji yxyxhAyxhS

,,

,, .

Reduce ∆A for a better approximation.



2

A sheet has mass m x,y( ) per unit area.
What is the mass of the sheet?

Divide the sheet into squares of mass
approximately equal to ( ) AyxmM ji ∆=∆ , .

Then sum over the different squares
( ) ( )∑∑ ∆∆=∆=

ji
jiji

ji
ji yxyxmAyxmS

,,

,, .

How can we evaluate the sum?

One way is to sum all the elements for
which x = xi  and obtain the total for a strip
of width ∆xi.  Next add up the sums for
the different strips,

( ) i
i j

jji xyyxmS ∆





∆= ∑ ∑ , .

As ∆yi  is made infinitesimally small the
summation over j  becomes an integral
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S = m xi ,y( )dy
0

b

∫
 
 
  

 
 

i
∑ ∆xi.

As ∆xi is made infinitesimally small the
summation over i  becomes an integral

S = m x, y( )dy
0

b

∫ dx
0

a

∫

We must perform a 1 dimensional integral
with respect to y and then a 1 dimensional
integral with respect to x .  This is an
iterated integral.

Notation: The limits written above the
inner integral sign refer to the inner
differential. i.e. in this case 0 and b are the
limits for the integration with respect to y.

Example: evaluate the integrals

I = x eβydy
0

b

∫ dx
0

a

∫   and  I = x eβydx
0

a

∫ dy
0

b

∫
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Choosing the limits

Suppose that the sheet of material is not
rectangular.

In general the limits for the integral with
respect to y depend upon the value of xi .

The integral is written as

I = m x,y( )dy
y= f1 x( )

f 2 x( )
∫ dx

x=a

b

∫ .

Changing the order of integration changes
the limits - divide the region of integration
into strips to remember how! Then

I = m x,y( )dx
x=g1 y( )

g2 y( )
∫ dy

y=c

d

∫ .
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Changing coordinate system

A rectangular element of area with sides
∆xi and ∆yi  is not the only choice.

What element of area might we use if we
were working in 2D polar coordinates?

Subtracting the areas of sectors from two
concentric circles of radius ρ  and ρ + ∆ρ .

( )[ ]
( )[ ]

φρρ

ρρρρρφ

ρπρρπ
π
φ

∆∆≈

−∆+∆+∆=

−∆+∆=∆

222

22

2
2

2
A

(as if the shaded area is a square of with
sides ∆ρ  and ρ∆φ )

So, as ∆ρ  and ∆φ  become infinitesimally
small we write dA = ρ dρ dφ .
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Example: Use both Cartesian and 2D
polar coordinates to calculate the area of a
circle of radius a .
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Double integrals may be written as
f dA

ℜ
∫∫

where ℜ is the region of integration.

The value of the integral is independent of
the coordinate system used to evaluate it.

We choose the most convenient coordinate
system - that which allows the integrand or
limits to be written simply.
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Example:  A disc of radius a  centred at
the origin has mass per unit area

m = c a2 − x2 − y2 .

Find the total mass of the disc.
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Triple Integrals
A box of sand could be divided into boxes of
volume ∆V = ∆x ∆y ∆z

The total volume is approximately the sum of
the volumes of all the boxes.
Or if the density of the sand is m x,y, z( ) then
the total mass is approximately

( )
( )∑∑∑

∑
∆∆∆=

∆=

i j k
ijkkji xyzzyxm

VzyxmS

,,

,,

As ∆xi ,∆y j ,∆zk  become infinitesimally small

the summations become integrals

M = m x,y, z( )dz
0

h x,y( )
∫

0

b

∫
0

a

∫ dy dx = m
ℜ
∫∫∫ dV

The final expression is a triple integral  in
which the coordinate system is not specified
but ℜ is the volume occupied by the sand.
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Example:  A sand box has a base
 0 ≤ x ≤ a, 0 ≤ y ≤ b, z = 0.

The height of the sand in the box is
h x, y( ) = xy

and its density is
m(x, y, z) = m0 c − z( )

where c and m0  are constants.
Find the total mass of sand in the box.
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Changing coordinate system
What element of volume do we use?

Cylindrical polar coordinates :

∆V ≈ ρ ∆ρ ∆φ ∆z  so  dV = ρ dρ dφ dz.

Spherical polar coordinates:

∆V ≈ r2 sinθ ∆r ∆φ ∆θ
and so      dV = r2 sin θ dr dφ dθ .
We use the coordinate system which is
most convenient.
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Example: Use both Cartesian and Sperical
polar coordinates to calculate the volume
of a sphere of radius a .
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Line Integrals
For a piece of wire we have equations for:
(i) the curve describing its position.
(ii) its density at different points.

Could we then find its length and mass?

An infinitesimal segment of the curve has
length ds and mass mds where m is the
mass per unit length.  From Pythagoras
Theorem

( ) ( )( )2
1

22 dydxds += .
The length ofwire between two points A
and B on the curve is then given by

L = ds
C
∫ = dx( )2 + dy( )2

C
∫

where C is the arc joining A
 

and B.
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The mass of the wire between A
 

and B is
M = m x,y( )ds

C
∫

L and M are given by line integrals  - 1D
integrals along a curved path

Example: a piece of wire lies in the xy
plane and has a shape described by the
equation

 y = a x3/2 , for 0 ≤ x ≤ b.
The mass per unit length of the wire is
given by

 m = cx.
Find the length and mass of the wire.
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The work done by a force F on a particle
as it moves through a distance dr is given
by dW = F ⋅dr.  The total amount of work
done in moving along a curve C is

W = dW
C
∫

= F ⋅dr
C
∫

= F1i + F2 j+ F3k( )⋅ dxi + dyj+ dzk( )
C
∫

= F1dx + F2dy + F3dz[ ]
C
∫

This is a line integral along a curve in 3
dimensional space.

From a purely mathematical point of view
we may consider integrals of the form

P
C
∫ x,y, z( )dx + Q x, y, z( )dy + R x,y,z( )dz

in which P, Q and R, have no physical
meaning but these are of less interest to us
here.
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Parameterisation of line integrals
Line integrals may be evaluated by
parameterisation (as used for the curved
wire in an earlier example).

Consider the line integral
I = F x, y( )

C
∫ ds

Transforming ds, the integral becomes

I = F x,y x( )( ) 1+ dy
dx

 
 

 
 

2 
 
  

 
 

1
2

dx
a1

a2

∫ ,

so that here x  is the parameter.
Or we could choose y to be the parameter:

I = F x(y), y( )
b1

b2

∫
dx
dy

 
 
  

 
 

2

+1
 

 
 

 

 
 

1
2

dy.
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The position on the path might be
described by a separate parameter such as
the time t.  The integral then becomes

I = F x t( ),y t( )( ) dx
dt

 
 

 
 

2

+ dy
dt

 
 

 
 

2 
 
  

 
 

1
2

dt
t1

t2
∫

For integrals of the type
I = P x,y( )dx + Q x,y( )dy[ ]

C
∫

similar parameterisations can be made:

( )( ) ( )( ) dx
dx

dy
xyxQxyxPI

a

a
∫ 



 +=

2

1

,, .

or

( )( ) ( )( ) dyyyxQ
dy

dx
yyxPI

b

b
∫ 








+=

2

1

,, .

or

( ) ( )( ) ( ) ( )( ) dt
dt

dy
tytxQ

dt

dx
tytxPI

t

t
∫ 



 +=

2

1

,, .

We will usually choose the
parameterisation that leads to the simplest
form for the integrand.
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Example: Evaluate the integral xy
C
∫ ds

where C is the contour made up of straight
line segments joining the points a,0( ),
a,a( ), and −a,0( ).

Example: Evaluate the integral x2

C
∫ ds

where C is a semicircular arc in the upper
half plane, centred on the origin with
radius a .  The integral is evaluated from
a,0( ) to −a,0( ).
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Properties (Spiegel, page 151)

1.  
P x,y( )dx + Q x,y( )dy[ ]

C
∫ =

P x,y( )dx +
C
∫ Q x,y( )dy

C
∫

2.Reversing the direction of integration
along C changes the sign of the integral.

[ ]
( )

( )
[ ]

( )

( )

∫∫ +−=+
11

22

22

11

,

,

,

,

ba

ba

ba

ba

QdyPdxQdyPdx

3.Line integrals may be split up

Pdx + Qdy[ ]
a1,b1( )

a2,b2( )
∫ =

Pdx + Qdy[ ]
a1,b1( )

a3,b3( )
∫ + Pdx + Qdy[ ]

a3,b3( )

a2,b2( )
∫

Different parameterisations may then be
used for the two parts.
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4. A line integral around a closed curve
has a 'sense'.

Green's Theorem in the plane

The region ℜ is bounded by the closed
curve C.  Consider the 2D integral

I = ∂P

∂y
dx dy

ℜ
∫∫

in which P is some function of x  and y.
The curve C can be broken into two parts
y = f1 x( ) and y = f 2 x( ) for a1 ≤ x ≤ a2.
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Integrating first with respect to y the limits
are easily written:

( )

( )

( ) ( )[ ]∫

∫ ∫

−=

=

2

1

2

1

2

1

)(,)(, 12

a

a

a

a

xf

xf

dxxfxPxfxP

dydx
dy

dP
I

.

This can be split up into line integrals
along the top and bottom parts of C.

∫

∫∫

∫∫

−=

−−=

−=

C

a

a

a

a

a

a

a

a

dxP

dxxfxPdxxfxP

dxxfxPdxxfxPI

2

1

1

2

2

1

2

1

))(,())(,(

))(,())(,(

12

12

.

The circle on the integral sign indicates
that the curve is closed and the integral is
understood to be evaluated in the positive
sense.  Our result is that

∂P
∂y

dx dy
ℜ
∫∫ = − P dx

C
∫ ,

which is one form of Green' s theorem in
the plane.
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Alternatively, for Q, a second function of
x  and y, we could integrate w.r.t. x  first
and obtain

( )

( )

( )( ) ( )( )[ ]

( )( ) ( )( )

∫

∫∫

∫

∫ ∫∫∫

=

+=

−=

=
ℜ

C

b

b

b

b

b

b

b

b

yg

yg

dyQ

dyyygQdyyygQ

dyyygQyygQ

dxdy
x

Q
dydx

x

Q

1

2

2

1

2

1

2

1

2

1

,,

,,

12

12

∂
∂

∂
∂

Notice the sign is diff erent! Adding the
two equations together we obtain:

Pdx + Qdy( )
C
∫ = ∂Q

∂x
− ∂P

∂y
 
 
  

 
 

ℜ
∫∫ dx dy

which is another statement of Green’s
Theorem in the plane.
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Example: Calculate the area of an ellipse
that has major axes of length 2a and 2b
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Line integrals that are independent of path
From Green' s Theorem, if throughout ℜ
(1) ∂Q

∂x
= ∂P

∂y
then for any closed curve C in ℜ
(2) Pdx + Qdy( )

C
∫ = 0.

Also if (2) is true for every closed curve in
ℜ then (1) is true throughout ℜ. Then:

C
∫ = 0 =

AED
∫ +

DA
∫ =

AFD
∫ +

DA
∫

and so     
AED

∫ =
AFD

∫ .

The integral from A to D is independent of
the path and represents the change in a
function Z x,y( ) where  dZ = P dx + Qdy.
Equation (1) is just the condition for this
differential to be exact. e.g. P and Q could
be the x  and y components of
a conservative force.
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Surface Integrals

Line integrals along a curve are the
generalisation of a 1D integral.

2D integrals can be generalised  to
integrals over curved surfaces.

Consider a surface S  defined by the
equation z = h x,y( ).  If the mass per unit
surface area is given by m x,y, z( ) then
how do we calculate the total mass?

S  can be divided up into elements of area
∆Sp.  If xp ,yp , zp( ) is a point on the

element of area then the mass of the
element is approximately
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 ( ) ppppp SzyxmM ∆=∆ ,, .

So the total mass is

( )∑∑ ∆=∆≈
p

pppp
p

p SzyxmMM ,,

As ∆Sp is made infinitesimally small, the
summation tends to the surface integral

M = m x,y, z( )dS
S
∫∫ .

S  can be projected onto a region ℜ in the
xy plane.  The vector n p is the normal to
the surface at a given point.  The area of
the projection of ∆Sp onto the xy plane is

∆Ap = cos γ p ∆Sp

where γ p is the angle between n p and the
z  axis i.e. cos γ p = np ⋅k. Then

M = m x,y, z( )dS
S
∫∫ = m x,y,z( )secγ dA

ℜ
∫∫

in which z = h x, y( ).
To find np and hence sec γ  we first find
two vectors parallel to the surface.  If we
hold y constant and change x  by ∆x , then

z will change by x
x

z

y

∆






∂
∂

 and so the
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vector 









∆





∆ x

x

z
x

y∂
∂

,0,  lies parallel to the

surface.  Two such unit vectors are

 
















∂
∂








∂
∂+

=
y

y

x

z

x

z
,0,1

1

1
21u

















∂
∂







∂
∂+

=
x

x

y

z

y

z
,1,0

1

1
22u

The unit vector perpendicular to these is

















−





−






+




+

= 1,,

1

1
22

xy

xy

y

z

x

z

y

z

x

z ∂
∂

∂
∂

∂
∂

∂
∂

pn

and so now we may calculate

22

1

1
cos

xy

pp

y

z

x

z





+




+

=⋅=

∂
∂

∂
∂

γ kn
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The integral then becomes:
M = m x,y, z( )dS

S
∫∫

= m x,y, z( ) 1+ ∂z
∂x

 
 

 
 

2

+ ∂z
∂y

 
 
  

 
 

2

dx dy
ℜ
∫∫

.

The surface integral has been converted
into a double integral over x  and y, which
we know how to evaluate.

Example: Evaluate I = x2 dS
S
∫∫ ,  where S

is the hemisphere defined by

 x2 + y2 + z2 = a2 , z ≥ 0.
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Sometimes it is easier to use a non-
Cartesian coordinate system.  But we need
an expression for dS .

For a cylindrical surface .

dS = ρ dφ dz

For a spherical surface

dS = r2 sinθ dθ dφ



31

Example: we will recalculate the integral
from the previous problem using spherical
polar coordinates.
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Example: Evaluate I = x2dS
S
∫∫  where S  is

now the cylindrical surface defined by
ρ = a, −b ≤ z ≤ +b.
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The Dirac Delta Function

If the density of material in a volume V is
m x,y,z( ) then the total mass is

M = mdV
V
∫∫∫ .

But what is the density of a particle, such
as an electron, which is a point mass?

Consider a ‘top hat’ that has unit area.

f x( ) =
1

2w
, X − w < x < X + w

0, x < X + w, x > X + w

 
 
 

As w → 0 the ‘top hat’ f unction tends to
the Dirac Delta Function, which we write
as δ x − X( ).
The Dirac Delta Function  is defined  so as
to have the following properties:

δ x − X( ) = 0 for x ≠ X , and

δ x − X( )
−∞

∞
∫ dx = 1

f x( )
−∞

∞
∫ δ x − X( )dx = f X( ).
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However there is no explicit expression
for the delta function.
Returning to the case of the electron which
has mass Me, in a 1D problem, let the
electron be located at x = X .  If we write
the density as

m x( ) = Meδ x − X( )
then there is mass only at x = X  as
required and the total mass is

M = mdx
−∞

+∞
∫ = Me δ x − X( )dx

−∞

+∞
∫ = Me

In 3 D, if the electron is located at
r = R = X,Y,Z( ) then we could write

m r( ) = Meδ r − R( )
= Meδ x − X( )δ y − Y( )δ z − Z( ).

Again there is mass only at the point r = R
and the total mass is given by
M = mdV∫∫∫

= Me δ x − X( )δ y − Y( )δ z − Z( )dx dy dz
−∞

+∞
∫

−∞

+∞
∫

−∞

+∞
∫

= Me δ x − X( )dx δ y − Y( )dy δ z − Z( )dz
−∞

+∞
∫

−∞

+∞
∫

−∞

+∞
∫

= Me
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Other Properties

1. δ −x( ) = δ x( )

2. δ a x − X( )[ ]= 1
a

δ x − X( )

3.
d
dx

δ x( ) = − 1
x

δ x( )

4. ′ δ 
−∞

+∞
∫ x( ) f x( )dx = − ′ f 0( )

The top hat is not the only way of
approximating the delta function.  The
following functions may also be used in
the limit that n → ∞:

( ) ( )22explim xn
n

x
n

−=
∞→ π

δ (Gaussian)

( ) ( )221
lim

xn

n
x

n +
=

∞→ π
δ (Lorentzian)

( )
x

nx
x

n π
δ sin

lim
∞→

=
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Example: Evaluate ( )dVr
V
∫ − 0rrδ2

where r0 = 2,0,1( ).

Example: Show that

′ δ 
−∞

+∞
∫ x( ) f x( )dx = − ′ f 0( )


