Image Storage

In this lecture

- **★Image Size**
- *Storage
- **★**Format
- *DICOM
- *PACS

Image Size

- Number of pixels - Spatial Resolution
- Range in each pixel - Contrast Resolution
- Computer Memory

RECAP: Digital Signals

- Binary – Base two number system
- Binary Integer - BTTS
- ON or OFF

- 28 27 26 25 24 23 22 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
- 256
- 8 bit bytes

Matrix Size

- Image matrices used in radiography range from 32 X 32 to 2048 X 2048
- Example: 2048 x 2048
 - Approx 4M pixels
- 35 X 24 cm CR plate
- Pixels mm-1?

- · Range of values in each pixel gray-scale range , dynamic range or Bit-depth
- Numerical range in each pixel
- · Visually: number of shades of gray that can be represented
- Number of levels = 2n
 - Where n = number of bits

Dynamic Range

- · Larger dynamic range
 - More gradual steps between max and min
 - Increased contrast resolution
- Imaging systems are characterised by their dynamic range
 - Determined by signal sampling hardware and image processing software
- · Commonly 8-, 10- or 12-Bit

Image Size - Bytes

To calculate image size in Mb

- 1. Calculate total number of pixels in the image
- 2. Multiply by the bit-depth
- 3. Divide the result by 8 (8 'bits' in a 'byte')
- 4. Divide by 1,048,576 (bytes in a megabyte)

Example

2048 X 2048 24-bit digital camera image

 $2048 \times 2048 \text{ pixels}$ $2048 \times 2048 = 4,194,304$

- $= 4194304 \times 24$
- = 100,663,296 ÷ 8
- = 12,582,912 bytes or 12 mb

Image Storage

- · Digital image: Grid of numbers
- Format

Image Storage

- Digital Image Communication in Medicine
- · DICOM

Image Communication

- Picture Archiving and Communication System
- PACS

Summary

- **★Image Size**
- *Storage
- **★**Format
- *DICOM
- *PACS