

In this lecture

- ★Electromagnetic Effect
- *Electromagnets
- **★**Electromagnetic Induction
- \star Electromechanical Devices
- \star Transformers

Electromagnetic Induction

Magnitude of induced current is governed by the following:

- 1. Strength of Magnetic Field
- 2. Rate of change of Magnetic Field
- 3. Angle of conductor to Magnetic Field
- 4. Number of turns in conductor

Electromagnetic Induction

Electromagnetic Laws govern the induction of currents by changing magnetic fields.

There are two basic types of induction: 1. Self induction 2. Mutual induction

Example

- The turns ratio of a transformer is 0.1.
- What is the current in the secondary coil if the current flowing in the primary coil is 1 A?

Summary

- ★Electromagnetic Effect
- \star Electromagnets
- \star Electromagnetic Induction
- *Electromechanical Devices
- \star Transformers

Practice Questions

- 1. State the two principle laws of electromagnetism
- 2. There are 125 turns on the primary side, $N_{\rm p},$ of a transformer and 90,000 turns on the secondary side, $N_{\rm s}.$ If 110 V (ac) is supplied to the primary winding, $V_{\rm p},$ what will the voltage induced in the secondary winding, $V_{\rm s}?$
- 3. Describe the process of mutual induction
- 4. Why is it necessary to use a commutator ring in a DC motor?
- 5. Why is an iron core generally used in an electromagnet?