PAM2001 Dosimetry

In this lecture

- \star Ionizing radiation doses in the UK
- ★ Effects of Ionizing Radiation
- ★ Exposure
- * Exposure in Air
- ★ KERMA
- ★ Absorbed Dose
- ★ Exposures in Different Media
- ★ Dose Equivalent
- \star Effective Dose

Net Effects

- 1. Formation of electrical charge in air
- Air absorbs energy as electric charges are slowed down by collisions with air molecules. Causes more ionizations
- 3. Heating via transfer of energy to air molecules

Traditional measure of exposure concerned only with 1.

Measure of amount of ionization in air

•Units: C . Kg⁻¹

Exposure Rate

- Measure of the intensity of a beam of given quality
- Greater number of photons passing through unit area the greater the amount of ionization of air per unit time
- Units: C . Kg⁻¹ . s⁻¹

Exposure in Air

- Average atomic number of Air ~ 7.65
- Average atomic number of Muscle ~ 7.42
- Therefore have similar mass attenuation coefficients

$I = I_o exp[-(\mu/\rho)x]$

Mass attenuation coefficient $\,\mu/\rho\,$

Exposure in Air

- Energy absorbed from X-ray beam by given mass of air is similar to energy absorbed in the same mass of muscle
- Energy absorbed in air & muscle is therefore proportional to exposure measured in air

Air as a Medium in Dosimetry

• Allows dose in tissue to be calculated from knowledge of air exposure

Exposure & Air Kerma

•Exposure has been replaced by absorbed dose in air or air kerma

<u>K</u>inetic <u>E</u>nergy <u>R</u>eleased per unit <u>M</u>ass of <u>A</u>bsorber

- Main Reason:
 - Much easier to calculate the absorbed dose in a structure from the air kerma

Absorbed Dose & Air Kerma

- Quantity of *charge* produced in air is <u>NOT</u> the same as the *energy* actually absorbed
- The two quantities are proportional to each other

Absorbed Dose

<u>Definition</u>

"Absorbed dose in a medium is the ratio E/M. Where E is the energy absorbed in a medium due to a beam of ionizing radiation directed at a small mass M."

Units: Gray 1 Gray = 1 Joule per Kilogram

Exposure & Absorbed Dose

Note:

- •Exposure is defined in terms of X- or *y-rays*
- •Absorbed dose is defined in terms of any form of ionizing radiation

Effects of Different Media

- Dosemeters & Dose Rate Meters
- Calibrated to read absorbed dose in air
- I.e. Reading of 0.5 mGy in air at a particular point in a X- or γ-ray beam

 Not true that this is the dose absorbed in any other medium

Effects of Different Media

- For two media to received the same dose, they must absorbed the same energy per unit mass
- This is the same as saying the mass absorption coefficient (μ_{α}/ρ) of the two media must be equal

Quality Factor & Dose Equivalent

- Differences are due to different densities of ionizations they produce in the same sample
- Therefore absorbed dose is NOT an accurate measure of the *biological effects* of different types of radiation.

Quality Factor & Dose Equivalent

- Units used to measure overall biological effectiveness of different types of radiation
- Dose Equivalent
- Unit: sieverts (Sv)

Quality Factor & Dose Equivalent

• Absorbed dose and dose equivalent are related

dose equivalent (Sv) = Q × absorbed dose (Gy) × N

- Q quality factor (related to № of ion-pairs produced per unit length)
- N other factors effecting biological effectiveness (dose rate)

Quality Factor & Dose Equivalent

 Absorbed dose and dose equivalent are related dose equivalent (Sv) = Q x absorbed dose (Gy) x N

Radiation	Quality Factor
X- & γ-rays	1
Electrons or B-particles	1
Thermal Neutrons	2.3
Fast Neutrons	10
Protons	10
a-particles	20
Recoil Nuclei	20
Fission Fragments	20

- Dose equivalent is too crude for use in radiobiology
 Considers only the average effects on a group of cells
- For Radiobiology we may wish to look more precisely at the effects on individual cells
- As with Q, this is compared usually compared with the same dose of X- or y-rays
- Use Relative Biological Effectiveness (RBE)

 Compares the absorbed dose of different types of radiation required to produce the same biological effects

Effective Dose

- Different tissues show different sensitivities to radiation
- Tissue Weighting factor (W_t)

"Risk of stochastic event being induced in a particular tissue when singularly radiated, compared to the risk of inducing effect if the same dose is received by whole body"

Effective Dose = *Dose Equivalent* $\times W_{+}$

• Units: sieverts (Sv)

Tissue Weighting	Factor	
	Tissue weighting f	actors
• The sum of the	Testes & Ovaries	0.20
ine sum of the	Red Bone Marrow	0.12
tissue weighting	Colon	0.12
factors is unity	Lung	0.12
	Stomach	0.12
	Breasts	0.05
	Bladder	0.05
	Oesophagus	0.05
	Thyroid	0.05
	Liver	0.05
	Bone Surfaces	0.02
	Skin	0.01
	Remaining Tissues	0.04

Example

- A radiograph is produced with the following dose equivalents:
 - breasts 0.2 mSv,
 - lung 0.4 mSv,
 - thyroid 0.06 mSv,
 - Bone surface 0.02 mSv,
 stomach 0.08 mSv,
 - oesophagus 0.01 mSv,
 - skin 0.2 mSv.
- Calculate the effective dose received by the patient.

Tissue weighting factors		
Testes & Ovaries	0.20	
Red Bone Marrow	0.12	
Colon	0.12	
Lung	0.12	
Stomach	0.12	
Breasts	0.05	
Bladder	0.05	
Oesophagus	0.05	
Thyroid	0.05	
Liver	0.05	
Bone Surfaces	0.02	
Skin	0.01	
Remaining Tissues	0.04	

Summary

- \star Ionizing radiation doses in the UK
- ★ Effects of Ionizing Radiation
- * Exposure
- ★ Exposure in Air
- ★ Kerma
- * Absorbed Dose
- * Exposures in Different Media
- ★ Dose Equivalent
- \star Effective Dose