Bipolar Junction Transistors

Introduction

PHY2003 does not require a knowledge of the semiconductor physics underlying how transistors work, they are treated as nonlinear three-terminal devices. Figure 1 defines the current conventions used in PHY2003. The rules-of-thumb for analysing bipolar junction transistor (BJT) circuits at low-frequencies are:

$$
\begin{gather*}
\text { NPN: } \quad V_{C}>V_{\mathrm{B}}=V_{\mathrm{E}}+0.6 \mathrm{~V} \\
\text { PNP: } \quad V_{C}<V_{\mathrm{B}}=V_{\mathrm{E}}-0.6 \mathrm{~V} \tag{9.1}\\
\text { if }\left\{\begin{array}{cc}
\mathrm{NPN}: & V_{\mathrm{B}}<V_{\mathrm{E}}+0.6 \mathrm{~V} \\
\text { PNP. } & V_{\mathrm{B}}>V_{\mathrm{E}}-0.6 \mathrm{~V}
\end{array}\right\} \text { then } I_{C}=0 \text { else } I_{\mathrm{C}}=h_{\mathrm{FE}} I_{\mathrm{B}} \tag{9.2}\\
\text { typically } 50<h_{\mathrm{FE}}<500 \text { therefore } I_{\mathrm{E}} \approx-I_{\mathrm{C}} . \tag{9.3}
\end{gather*}
$$

Required Reading

Bipolar Transistors - Storey (1998) §7.1-7.7 pp. 234-295 / (2006) §8.1-8.8 pp. 221-284.
Another source of the required information are the WWW references listed under: [http://newton.ex.ac.uk/teaching/CDHW/Electronics2/ElectronicsResources.html\#xistors](http://newton.ex.ac.uk/teaching/CDHW/Electronics2/ElectronicsResources.html%5C#xistors)

Circuit 9.2 Series Feedback Amplifier

Exercise 9.1 Analyse circuit 9.1 using typical values from the BC107 datasheet and find:
(a) the quiescent voltage at node 3 ,
(b) the DC impedance of node 2 and hence the low-frequency -3 dB point
(c) the small-signal voltage gain v_{3} / v_{1} at 1 kHz and 10 kHz .

Answers:
(a) 6.4 V (assuming $\mathrm{HFE}=150$)
(b) $2.2 \mathrm{k} \Omega, 7.2 \mathrm{kHz}$
(c) -60 and -400

Exercise 9.2 Analyse circuit 9.2 using typical values from the BC107 datasheet and find:
(a) the quiescent voltage at node 3
(b) the quiescent voltage at node 4
(c) the small-signal gain v_{4} / v_{1} at 1 kHz
Answers:
(a) 2.1 V
(b) 6.3 V
(b) -60 and -400
(c) $v_{4} / v_{1}=-2.7$

