Op-Amp Integrators and Oscillators

Op-Amp Integrator

Milestone 0

Circuit 4.1 is a naive design for an integrator. Initially, the input voltage $V_{\mathrm{in}}=-12 \mathrm{mV}$ and the capacitor is short-circuited. At time $t=0$ the short-circuit is removed. Describe what would happen to the output voltage if all the components were ideal. Construct the circuit using a $741 \mathrm{op}-\mathrm{amp}$ and measure how it behaves in practice. Use a potential divider to generate the 12 mV DC input.

Milestone 1

Circuit 4.2 is an improved integrator design - build it using an LF411 type op-amp. The power supply will need to be decoupled with a capacitor of approximately $0.1 \mu \mathrm{~F}$ between ground and each supply rail. Adjust the input voltage offset ('balance' on the data sheet) with the feedback capacitor short-circuited. Remove the short-circuit and measure the rate (i.e. in volts per second) at which the output drifts over a period of a minute. Test the circuit using a 100 Hz square-wave of zero mean and peak-to-peak amplitude 1 V . Note that it is the different input-bias current I_{B} specifications of the two types of op-amps is responsible for the different performance.

Milestone 2

Circuit 4.1 Naive Integrator

Calculate the frequency response of circuit 4.2 assuming that the op-amp is ideal and plot the results as a Bode plot using the graph-paper supplied. What is the purpose of the $1 \mathrm{M} \Omega$ resistor, and over what frequency range does circuit 4.2 behave as an integrator? Measure the frequency response (1 Hz to 10 kHz) of your circuit (using an oscilloscope and sine-wave generator) at no more than 16 representative points which should also be plotted on your Bode plot.

Milestone 3

Oscillators

Circuit 4.3 is a loop comprising an amplifier of gain $\mathbf{G}=\mathbf{V}_{1} / \mathbf{V}_{0}$ and a feedback network coupling fraction \mathbf{B} of the voltage at node 1 back to node 0 . \mathbf{B} is given by

$$
\begin{equation*}
\frac{1}{\mathbf{B}}=\frac{\mathbf{V}_{1}}{\mathbf{V}_{0}}=\left(1-\frac{6 j}{\omega C R}-\frac{5}{(\omega C R)^{2}}+\frac{j}{(\omega C R)^{3}}\right) \tag{4.1}
\end{equation*}
$$

The Barkhausen Criterion applied to this circuit indicates that it will oscillate at frequency ω when $\mathbf{G}(\omega) \mathbf{B}(\omega)=1$. Find the value of $\omega C R$ for which $\operatorname{Im}(\mathbf{B})=0$, and the corresponding value of \mathbf{G} that satisfies the Barkhausen criterion. Hence calculate the frequency at which oscillation occurs when $C=10 \mathrm{nF}$ and $R=1.8 \mathrm{k} \Omega$, and the required value of R_{F}.

Milestone 4

Construct the circuit using these values and a $741 \mathrm{op}-\mathrm{amp}$. [Hint: Try a $47 \mathrm{k} \Omega$ resistor in series with a $10 \mathrm{k} \Omega$ variable resistor for R_{F}.] Investigate qualitatively how the signal shape depends on the value of A set by the variable resistor. Measure the oscillation frequency and the phase difference (use a Lissajous figure) between nodes 0 and 1. If these do not agree with your predictions above, explain why.

Circuit 4.3 Phase-Shift Oscillator

Milestone 5
Calculate the complex ratio of voltages at nodes 0 and 1 of circuit 4.4.
Circuit 4.5 is known as a Wien bridge oscillator (see Storey, page 148). Select component values to give an oscillation frequency of approximately 1 kHz and build and test the circuit. You will need to include a potentiometer to allow fine adjustment of the ratio R_{1} / R_{2}.

End of Bonus Mile

