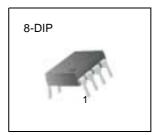
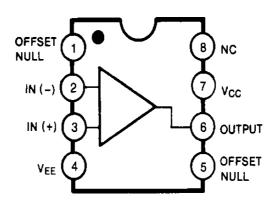


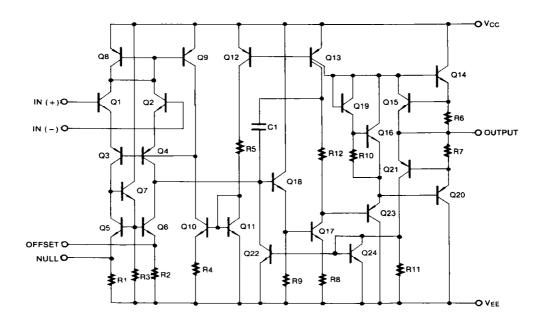
LM741


Single Operational Amplifier

Features


- Short circuit protection
- Excellent temperature stability
- Internal frequency compensation
- High Input voltage range
- Null of offset

Description


The LM741 series are general purpose operational amplifiers. It is intended for a wide range of analog applications. The high gain and wide range of operating voltage provide superior performance in intergrator, summing amplifier, and general feedback applications.

Internal Block Diagram

Schematic Diagram

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	LM741	Unit
Supply Voltage	Vcc	±18	V
Differential Input Voltage	VI(DIFF)	30	V
Input Voltage	VI	±15	V
Output Short Circuit Duration	-	Indefinite	-
Power Dissipation	PD	500	mW
Operating Temperature Range	TOPR	0 ~ + 70	°C
Storage Temperature Range	TSTG	-65 ~ + 150	°C

Electrical Characteristics

(VCC = 15V, VEE = -15V. TA = 25 $^{\circ}$ C, unless otherwise specified)

Parameter		Councile of	Conditions		LM741			1124
Param	eter	Symbol	Conditions		Min.	Тур.	Max.	Unit
lanut Offact Valta ==	VIO	Rs≤10KΩ		-	2.0	6.0	mV	
Input Offset Voltage		Rs≤50Ω		-	-	-		
Input Offset Voltage Adjustment Range	е	VIO(R)	VCC = ±20V		-	±15	-	mV
Input Offset Curren	t	lio	-		-	20	200	nA
Input Bias Current		IBIAS		-	-	80	500	nA
Input Resistance		Rı	Vcc =±20V		0.3	2.0	-	MΩ
Input Voltage Rang	je	V _I (R)	-		±12	±13	-	V
Large Signal Voltage Gain	0	RL≥2KΩ	V _C C =±20V, V _O (P-P) =±15V	-	-	-	\//m\/	
	ge Gaiii	Gy		VCC =±15V, VO(P-P) =±10V	20	200	-	V/mV
Output Short Circui	t Current	Isc	-		-	25	-	mA
Output Valtage Suing	VO(P-P)	P) $\frac{VCC = \pm 20V}{VCC = \pm 15V}$	RL≥10KΩ	-	-	-	V	
			RL≥10KΩ	-	-	-		
Output Voltage Swing			RL≥10KΩ	±12	±14	-		
			RL≥10KΩ	±10	±13	-		
Common Mode Rejection Ratio		CMRR	Rs≤10KΩ, VC	Rs≤10K Ω , VcM = ±12V		90	-	dB
		CIVILLIA	Rs≤50Ω, VcM = ±12V		-	-	-	
Power Supply Rejection Ratio		PSRR	$V_{CC} = \pm 15V$ to $V_{CC} = \pm 15V$ R _S $\leq 50\Omega$		-	-	-	dB
		\	$V_{CC} = \pm 15V$ to $V_{CC} = \pm 15V$ R _S ≤10KΩ		77	96	-	
Transient	Rise Time	t _R	Unity Gain		-	0.3	-	μs
Response	Overshoot	OS			-	10	-	%
Bandwidth		BW	-		-	-	-	MHz
Slew Rate		SR	Unity Gain		-	0.5	-	V/µs
Supply Current		Icc	R _L = ∞Ω		-	1.5	2.8	mA
Power Consumption		PC	VCC = ±20V		-	-	-	- mW
		'	Vcc = ±15V		-	50	85	

Electrical Characteristics

($0^{\circ}\text{C} \le \text{TA} \le 70^{\circ}\text{C V}_{\text{CC}} = \pm 15\text{V}$, unless otherwise specified)

Davamatar	Cumala al	Conditions		LM741			1111
Parameter	Symbol			Min.	Тур.	Max.	Unit
Input Offact Voltage	1/10	Rs≤50Ω		-	-	-	mV
Input Offset Voltage	Vio	Rs≤10KΩ		-	-	7.5	
Input Offset Voltage Drift	ΔV10/ΔΤ		-	-	-		μV/°C
Input Offset Current	lio		-	-	-	300	nA
Input Offset Current Drift	ΔΙΙΟ/ΔΤ		-	-	-		nA/ °C
Input Bias Current	IBIAS		-	-	-	0.8	μΑ
Input Resistance	Rı	Vcc = ±20V		-	-	-	MΩ
Input Voltage Range	VI(R)	-		±12	±13	-	V
Output Voltage Swing V	VO(P-P)	VCC =±20V	Rs≥10KΩ	-	-	-	- V
			Rs≥2KΩ	-	-	-	
		VCC =±15V	Rs≥10KΩ	±12	±14	-	
			Rs≥2KΩ	±10	±13	-	
Output Short Circuit Current	Isc	-		10	-	40	mA
Common Mode Poinction Potio	CMRR	Rs≤10KΩ, Vo	CM = ±12V	70	90	-	dB
Common Mode Rejection Ratio	CIVIRR	Rs \leq 50 Ω , V _{CM} = \pm 12V		-	-	-	ub l
Power Supply Rejection Ratio	PSRR	VCC = ±20V to ±5V	Rs≤50Ω	-	-	-	- dB
			Rs≤10KΩ	77	96	-	
Large Signal Voltage Gain	Gγ Rs≥2KΩ	Rs≥2KΩ	$VCC = \pm 20V,$ $VO(P-P) = \pm 15V$	-	-	-	V/mV
			$VCC = \pm 15V,$ $VO(P.P) = \pm 10V$	15	-	-	
		$VCC = \pm 15V,$ $VO(P-P) = \pm 2V$	-	-	-		

Typical Performance Characteristics

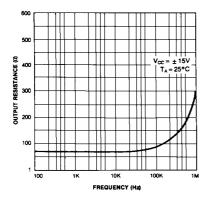


Figure 1. Output Resistance vs Frequency

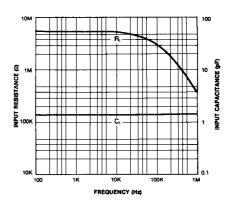


Figure 2. Input Resistance and Input Capacitance vs Frequency

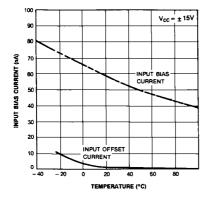


Figure 3. Input Bias Current vs Ambient Temperature

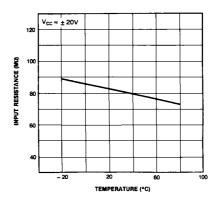


Figure 4. Power Comsumption vs Ambient Temperature

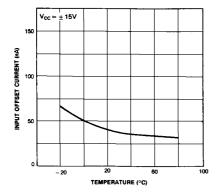


Figure 5. Input Offset Current vs Ambient Temperature

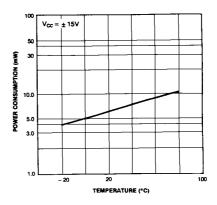


Figure 6. Input Resistance vs Ambient Temperature

Typical Performance Characteristics (continued)

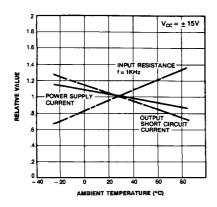
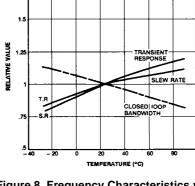



Figure 7. Normalized DC Parameters vs Ambient Temperature

V_{CC} = ± 15V

Figure 8. Frequency Characteristics vs Ambient Temperature

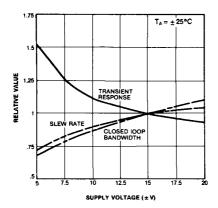


Figure 9. Frequency Characteristics vs Supply Voltage

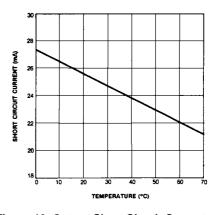


Figure 10. Output Short Circuit Current vs Ambient Temperature

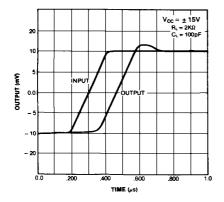


Figure 11. Transient Response

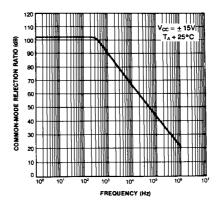


Figure 12. Common-Mode Rejection Ratio vs Frequency

Typical Performance Characteristics (continued)

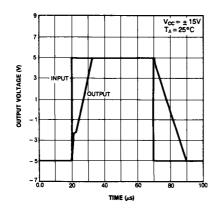


Figure 13. Voltage Follower Large Signal Pulse Response

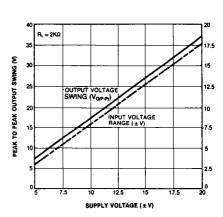
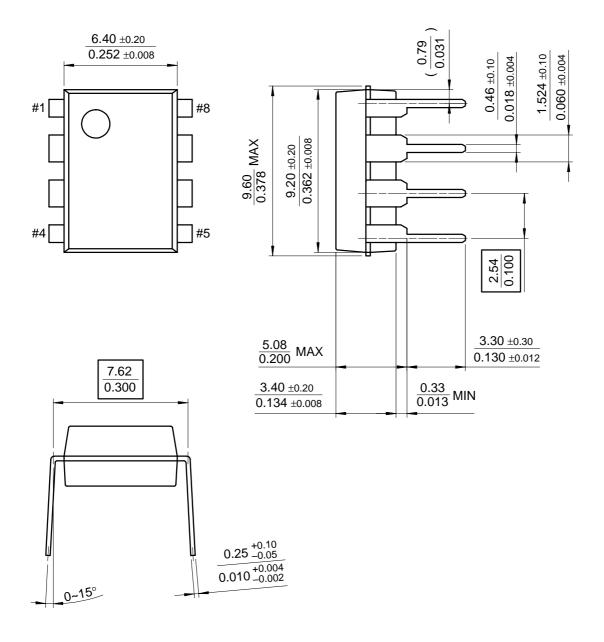



Figure 14. Output Swing and Input Range vs Supply Voltage

Mechanical Dimensions

Package

8-DIP

Ordering Information

Product Number	Package	Operating Temperature		
LM741CN	8 DIP	0 ~ + 70°C		

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com