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Temperature Controllers 

Introduction 

This handout examines the performance of several systems for controlling the temperature of an 

oven by adjusting the heater power – a much harder task than it might first appear. The problem is 

useful to study in detail because its behaviour is easy to visualise and is typical of that encountered 

in almost every electronic system employing feedback. The final, so-called PID, design is an 

effective, and widely used, general-purpose controller. 

Problem Description 

Power ˙ Q  is supplied to the oven by an electrical element, heat capacity Ch, at temperature Th. This 

is linked through a thermal resistance Rho to the oven, heat capacity Co, which loses heat to the 

environment, temperature Te, through the thermal resistance Ro of the enclosure. The controller 

monitors To and adjusts ˙ Q  with the goal of maintaining the oven temperature To at a set-point Ts. 
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Figure 1. Thermal model of oven and controller. 

The illustrative figures in this document have been drawn using parameters for a domestic cooker, 

estimated as follows: The heating element dissipates ˙ Q max =i4ikW when full-on. Maintaining the 

oven at a steady Toi=i225i˚C requires ˙ Q =i1.3ikW so Roi=i0.15iKiW–1. It takes half an hour for the oven 

to cool from 225i˚C to 100i˚C with room temperature Tei=i25i˚C so CoRoi~i1800is and therefore 

Coi=i1.0i i104
iJiK–1. The heating elements glow dull-red in operation suggesting that their temperature 

Thi~i750i˚C so use Rhoi~i0.1iKiW–1 and they cool with a time constant of about a minute making 

Chi~i500iJiK–1. The on-off contol thermostat typically has a 10i˚C hysteresis band. 
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On–Off Control 

This is the simplest form of controller and is used in most domestic ovens – when To < Ts /2( )  

the heater is turned on at full power, when To > Ts + /2( ) the heater is switched off completely. The 

parameter  introduces hysteresis into the system preventing noise from switching the heater rapidly 

and unnecessarily when To ~ Ts . As can be seen from figure 2, due to the heat capacity of the 

electrical element, the fluctuations in temperature are significantly wider than , the deliberately 

introduced hysteresis band. 
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Figure 2. The oven (To, solid) and set-point (Ts, dashed) temperatures using an on-off 

controller with hysteresis band i=i10i˚C. 

Operating Equations 

The temperatures To and Th are functions only of their initial values, ˙ Q  and time. Inspection of 

figure 1, the equivalent thermal “circuit”, shows that they are governed by two coupled differential 

equations 

 ˙ T h =
˙ Q 

Ch

Th To( )
ChRho

and ˙ T o =
Th To( )
CoRho

+
Te To( )
CoRo

. (1,2) 

Differentiating equation 2 and eliminating terms involving Th gives 

 ChRoCoRho[ ]˙ ̇ T o + CoRo + ChRo + ChRho[ ] ˙ T o + To = ˙ Q Ro + Te  (3) 

which is simply the equation of motion of a forced damped harmonic oscillator. It is helpful to 

rewrite the constants in terms of n, the natural frequency of the system and , its damping ratio 
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 ˙ ̇ T o + 2 n ˙ T o + n
2To = ˙ Q Ro + Te( ) n

2. (4) 

The system is critically damped if ii=i1, underdamped if ii<i1 and overdamped when ii>i1, 

 n
2 =

1

ChRhoCoRo
and = n

2
CoRo + ChRo + ChRho[ ] . (5,6) 

Proportional Control 

An obvious improvement to the on–off control strategy would be to reduce ˙ Q  progressively as the 

oven temperature approaches the set-point. A proportional controller does this with the function 

 ˙ Q =
Ro

Ts To( ) (7) 

subject to the limits 0 ˙ Q ˙ Q max  (the heater cannot absorb heat). The dimensionless parameter i>i0 

is the controller gain. With this controller the equation 4 becomes 

 ˙ ̇ T o + 2 p p ˙ T o + p
2To = Ts + Te( ) n

2  (8) 

where 

 p = 1+( ) and p
2 = n

2 1+( ) . (9,10) 

So, increasing  speeds-up the system but reduces the damping ratio thereby causing overshoot, 
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Figure 3. Proportional control. (The power is limited to ˙ Q max = 4 kW  during 

the early part of the transient.) 
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figure 3, and eventually instability. 

The equilibrium oven temperature with this type of controller is not equal to the set-point because 

the heater power must be zero when Toi=iTs. To quantify the the error T set ˙ T o = 0 and ˙ ̇ T o = 0  in 

equation 8 to find 

 T = Ts To( ) =
Ts Te
1+

. (11) 

Derivative Control 

The stability problems caused by using high values of gain for proportional control can be mitigated 

by adding a derivative term to the controller function, i.e. 

 ˙ Q =
Ro

Ts To( ) +
µ

nRo

˙ T s ˙ T o( )  (12) 

where the dimensionless parameter µi>i0 is the controller damping. The system equation is now 

 ˙ ̇ T o + 2
+ µ /2

1+

 

 
 

 

 
 p ˙ T o + p

2To = Ts + Te( ) n
2 + µ n ˙ T s  (13) 

and for any  a value of µ can be found to satisfy + µ /2( ) = 1+( )
1/2,  the condition for critical 

damping. 
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Figure 4. Proportional + derivative control. The proportional gain is kept constant as the 

damping µ is increased. 
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Figure 4 shows how adding derivative control improves the performance of a proportional 

controller. At first sight it would seem that a system with a large , and µ adjusted for critical 

damping, would be a good controller, but in practice there is noise associated with measuring To and 

this severely limits the maximum usable values of  and µ in a practical system. 

Integral Control 

Fortunately it is possible to eliminate the steady-state error T while using relatively low gain; this 

is done by adding an integral term to the control function which becomes 

 

˙ Q =
Ro

Ts To( ) +
µ

nRo

˙ T s ˙ T o( ) + n

Ro
Ts To( )d

 

 
 t

= P Ts To( ) + D ˙ T s ˙ T o( ) + I Ts To( )d
 

 
 t

 

 
 

 

 
 

 (14) 

where the integral level I is often known as the controller reset level. This form of function is known 

as proportional-integral-differential, or PID, control. The effect of the integral term is to change the 

heater power until the time-averaged value of T is zero. The method works quite well but 

complicates the analysis slightly because the system is now third-order. 
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Figure 5. PID control. Adding the integral term has eliminated the steady state error. The 

slight undershoot in the power suggests that there is scope for further tweaking. 

Unlike second-order systems, third-order systems are fairly uncommon in physics but the methods 

of control theory make the analysis quite straightforward. For instance, applying the so-called 
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Routh-Hurwitz stability criterion, which is a systematic way of classifying the complex roots of the 

auxiliary equation, it can be shown that when 

 1+ >
2 + µ

, (15) 

parameter values can be found to give an acceptably damped response with T eventually tending to 

zero if the set-point is changed by a step or linear ramp. Whereas derivative control improved the 

system damping, integral control eliminates steady-state error at the expense of stability margin. In 

its raw form integral control can be a mixed blessing; if To Ts  is large for a long period, for 

example after a large change in Ts or at switch-on, the value of the integral can become excessively 

large and cause overshoot or undershoot that takes a long time to recover. A sophisticated controller 

would inhibit integral action until the system is fairly close to equilibrium. 

Frequency Response and Noise 

The dominant source of noise in most temperature controller systems is equivalent to a white source 

of spectral density n added to the thermometer signal at the input to the controller. The output of the 

controller, represented in the frequency domain, is 

 ˙ Q ( ) = P 1+ Dj j I( ) s o + n( ). (16) 

where o is the Fourier transform of the oven temperature, P, I and D are the controller gain 

parameters, j = 1 , and since the Fourier transform of equation 4 

 o
2 + 2 j n + n

2( ) = ˙ Q ( )Ro + Te ( )( ) n
2 (17) 

where ( ) is the Dirac delta-function, the behaviour of the the system is given by 

 o =
RoP 1+ jD j I( ) s + n( ) + Te ( )[ ] n

2

n
2 1+ RoP( ) 2 + j n 2 + nRoPD( ) j n

2RoP I[ ]
. (18) 

This has the expected behaviour (see problems A) and shows that as the proportional gain, and 

hence speed of response, is increased so the noise-induced fluctuations in the oven temperature 

increase. This means that a compromise between response time and temperature stability has to be 

made when setting-up such a system. 

Practical Systems 

Some features of real systems are worth mentioning. Any system using a resistive electrical heater 

to control temperature is inherently non-linear because an electrical heater can only generate, not 
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absorb, heat. When Toi>iTs cooling occurs at a rate that depends on the oven and its temperature not 

the controller and dual PID controllers allow different heating and cooling parameter values to cope 

with this. It is possible to build a simple PID controller from a few operational-amplifiers, figure 6. 

Although the control output should be connected to a ‘linear voltage-to-power’ converter, the design 

will work reasonably over a narrow range of temperatures if the output is simply amplified and 

connected directly to the heater. Commercial PID process controllers vary in cost between £75 for a 

simple model and £600 for an intelligent autotuning dual PID model. 
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Figure 6. Circuit for home-brew PID control. 

Don’t assume, without checking, that the knobs on a PID controller correspond to the parameters P, I 

and D defined in this document. Values are often specified by time constants in which case a long 

integral time constant is equivalent to a low value of I but a long derivative time constant means a 

large value of D. The proportional gain is sometimes set by choosing a ‘proportional band’ which is 

the fractional change in temperature that gives maxumum change in heater power so a small number 

for this corresponds to a large value of P. A practical procedure to set up an uncalibrated PID 

controller, based on the analysis in the previous section, is as follows: (1) Set a typical set-point 

value Ts, turn off the derivative and integral actions and increase P to maximum, or until the system 

just oscillates; (2) If the system is not oscillating jump to step 4 otherwise reduce P by a factor of 

about two; (3) Observe the effect of increasing D on oscillations caused by suddenly decreasing or 

increasing Ts by about 5% – choose a value for D that gives a critically damped response; (4) 

Slowly increase the integral setting I until oscillation just starts, then reduce this value of I by a 

factor of two or three – this should be enough to stop the oscillation. This method is obviously only 

suitable in cases when the oscillations are not going to be harmful. 
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Control Theory 

Avoid re-inventing the wheel when tackling difficult feedback or control problems – control theory 

is a well developed branch of engineering and has a range of powerful techniques to design and 

analyse systems involving feedback. As well as having systematic methods for solving complicated 

problems it introduces the important ideas of controlability (‘Is it possible to control X by adjusting 

Y?’) and robustness (‘Will control be regained satisfactorily after an unexpected disturbance?’). 

Problems 

A. Show that the DC (i.e. i=i0) behaviour of equation 18 really is as would be expected by 

examining the cases when (i) Pi=i0, (ii) Pi i0, Ii i0, (iii) Pi i0, Ii=i0. 

B Rewrite equation 15 in terms of P, I and D and hence explain how the constraint affects the 

terms in equation 18. 

C Design a system to control the temperature of a copper disc, thickness 10imm radius 20imm. 

The heater should have a maximum power of 10iW, and control in the range 30–80i°C is 

required. 

 

There is an interactive version of this document at: 

 <http://newton.ex.ac.uk/teaching/CDHW/Feedback/index.html> 

which includes a simulation that allows the reader to experiment with the performance of the 

various types of controller. 
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